• Title/Summary/Keyword: Micro porous structure

Search Result 115, Processing Time 0.032 seconds

The Study on Properties of AAO(Anodic Aluminum Oxide) Structures with Hole Effect (Hole effect를 고려한 AAO(Anodic Aluminum Oxide) 구조물의 물성치에 대한 연구)

  • 고성현;이대웅;지상은;박현철;이건홍;황운봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.186-193
    • /
    • 2004
  • Porous anodic alumina has been used widely for corrosion protection of aluminum surfaces or as dielectric material in micro-electronics applications. It exhibits a homogeneous morphology of parallel pores which can easily be controlled between 10 and 400nm. It has been applied as a template for fabrication of the nanometer-scale composite. In this study, mechanical properties of the AAO structures are measured by the nano indentation method. Nano indentation technique is one of the most effective methods to measure the mechanical properties of nano-structures. Basically, hardness and elastic modulus can be obtained by the nano-indentation. Using the nano-indentation method, we investigated the mechanical properties of the AAO structure with different size of nano-holes. In results, we find the hole effect that changes the mechanical properties as size of nano hole.

CHARACTERISTICS OF RESIDUAL CARBON DERIVED FROM THE COMBUSTION OF VACUUM RESIDUE IN A TEST FURNACE

  • Park, Ho-Young;Seo, Sang-Il
    • Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.109-117
    • /
    • 2007
  • The characteristics of carbonaceous particles collected from the combustion of Vacuum Residue (VR) in a test furnace have been investigated. The physical and chemical characterization includes particle size, scanning electron microscopy of the surface structure, measurement of porosity, surface area and density, EDX/XRD analyses and measurement of chemical composition. The studies show that the carbonaceous VR particles are very porous and spheroidal, and have many blow-holes on the surface. The particles become smaller and more sponge-like as the reaction proceeds. The present porosity of VR particles is similar to that of cenospheres from the combustion of heavy oil, and the majority of pores are distributed in macro-pores above $0.03\;{\mu}m$ in diameter. Measurements of pore distribution and surface area showed that the macro-pores contributed most to total pore volume, whereas the micro-pores contributed to total surface area.

Ultrahigh Birefringence and Extremely Low Loss Slotted-core Microstructure Fiber in Terahertz Regime

  • Habib, Md. Ahasan;Anower, Md. Shamim;Hasan, Md. Rabiul
    • Current Optics and Photonics
    • /
    • v.1 no.6
    • /
    • pp.567-572
    • /
    • 2017
  • A novel slotted-core hexagonal photonic crystal fiber (PCF) for terahertz (THz) wave guiding is proposed in this paper. A trade-off managed between effective material loss (EML) and birefringence for efficient guidance of THz waves is illustrated in this article. The rectangular slot shaped air-holes break the symmetry of the porous-core which offers ultra-high birefringence of $8.8{\times}10^{-2}$. The proposed structure offers low bending loss of $1.07{\times}10^{-34}cm^{-1}$ and extremely low effective material loss (EML) of $0.035cm^{-1}$ at an operating frequency of 1.0 THz. In addition other guiding properties such as power fraction, dispersion and confinement loss are also discussed. The proposed THz waveguide can be effectively used for convenient transmission of THz waves.

Stability analysis of porous multi-phase nanocrystalline nonlocal beams based on a general higher-order couple-stress beam model

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.465-476
    • /
    • 2018
  • This article investigates buckling behavior of a multi-phase nanocrystalline nanobeam resting on Winkler-Pasternak foundation in the framework of nonlocal couple stress elasticity and a higher order refined beam model. In this model, the essential measures to describe the real material structure of nanocrystalline nanobeams and the size effects were incorporated. This non-classical nanobeam model contains couple stress effect to capture grains micro-rotations. Moreover, the nonlocal elasticity theory is employed to study the nonlocal and long-range interactions between the particles. The present model can degenerate into the classical model if the nonlocal parameter, and couple stress effects are omitted. Hamilton's principle is employed to derive the governing equations and the related boundary conditions which are solved applying an analytical approach. The buckling loads are compared with those of nonlocal couple stress-based beams. It is showed that buckling loads of a nanocrystalline nanobeam depend on the grain size, grain rotations, porosities, interface, elastic foundation, shear deformation, surface effect, nonlocality and boundary conditions.

The study on properties of AAO(Anodic Aluminum Oxide) structures using nano indentation (나노 인텐테이션을 이용한 산화알루미늄(AAO, Anodic Aluminum Oxide)구조물의 물성치에 대한 연구)

  • Ko, Seung-Hyun;Lee, Dae-Woong;Jee, Sang-Eun;Park, Hyun-Chul;Lee, Kun-Hong;Hwang, Woong-Bong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.144-149
    • /
    • 2004
  • Porous anodic alumina has been used widely for corrosion protection of aluminum surfaces or as dielectric material in micro-electronics applications. It exhibits a homogeneous morphology of parallel pores which can easily be controlled between 10 and 400nm. It has been applied as a template for fabrication of the nanometerscale composite. In this study, mechanical properties of the AAO structures are measured by the nano indentation method. Nano indentation technique is one of the most effective method to measure the mechanical properties of nano-structures. Basically, hardness and elastic modulus can be obtained by the nano-indentation. Using the nano-indentation method, we investigated the mechanical properties of the AAO structure with different size of nano-holes. In results, we find the hole effect that changes the mechanical properties as size of nano hole.

  • PDF

Studies on the Micro Structure of Unbalanced Magnetron Sputtered Zn-Mg Thin Films (비대칭 마그네트론 스퍼터링으로 합성된 Zn-Mg 박막의 미세조직에 관한 연구)

  • Ra, Jeong-Hyeon;Kim, Beom-Seok;Lee, Sang-Yul;Hong, Seok-Jun;Kim, Tae-Yeop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.127-127
    • /
    • 2012
  • 비대칭 마그네트론 스퍼터링을 이용하여 다양한 공정조건에서 조성을 변화시키며 Zn-Mg 합금 박막을 합성하였으며, 합성된 박막의 기초특성 분석을 실시하였다. 기존의 마그네트론 스퍼터링 공정으로 낮은 Mg 조성의 Zn-Mg 박막을 합성 할 경우 porous한 박막이 합성 되었다. 본 연구에서는 모든 조성의 Zn-Mg 박막의 치밀화를 위하여 차별화된 박막 합성 기술을 연구하였다. 본 연구에서 개발된 박막 합성 기술을 적용하여 Zn-Mg 박막을 합성 한 결과 3wt.% Mg 타겟을 이용하여도 치밀한 조직의 박막을 합성할 수 있었다. Zn-Mg 박막의 경도는 박막의 Mg 조성이 높을수록 증가하여 최고 403.1Hv를 나타냈다.

  • PDF

Effect of Inherent Anatomy of Plant Fibers on the Morphology of Carbon Synthesized from Them and Their Hydrogen Absorption Capacity

  • Sharon, Madhuri;Sharon, Maheshwar
    • Carbon letters
    • /
    • v.13 no.3
    • /
    • pp.161-166
    • /
    • 2012
  • Carbon materials were synthesized by pyrolysis from fibers of Corn-straw (Zea mays), Rice-straw (Oryza sativa), Jute-straw (Corchorus capsularis) Bamboo (Bombax bambusa), Bagass (Saccharum officinarum), Cotton (Bombax malabaricum), and Coconut (Cocos nucifera); these materials were characterized by scanning electron microscope, X-ray diffraction (XRD), and Raman spectra. All carbon materials are micro sized with large pores or channel like morphology. The unique complex spongy, porous and channel like structure of Carbon shows a lot of similarity with the original anatomy of the plant fibers used as precursor. Waxy contents like tyloses and pits present on fiber tracheids that were seen in the inherent anatomy disappear after pyrolysis and only the carbon skeleton remained; XRD analysis shows that carbon shows the development of a (002) plane, with the exception of carbon obtained from bamboo, which shows a very crystalline character. Raman studies of all carbon materials showed the presence of G- and D-bands of almost equal intensities, suggesting the presence of graphitic carbon as well as a disordered graphitic structure. Carbon materials possessing lesser density, larger surface area, more graphitic with less of an $sp^3$ carbon contribution, and having pore sizes around $10{\mu}m$ favor hydrogen adsorption. Carbon materials synthesized from bagass meet these requirements most effectively, followed by cotton fiber, which was more effective than the carbon synthesized from the other plant fibers.

Molecular Diffusion of Water in Paper(II)-Water-diffusion theory on pore structure of paper- (종이내 수분확산(제2보)-종이의 공극구조에 의한 수분확산 이론-)

  • Yoon, Sung-Hoon;Jeon, Yang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.3
    • /
    • pp.46-56
    • /
    • 1998
  • The objective of this study was to investigate the relationship between water vapor diffusion properties and the pore structure of paper. Gas-phase molecular diffusivity of water vapor through pores was determined based on the kinetic theory of gas. A mathematical model was derived to characterize the dimensional changes of the pore caused by the fiber-swelling mechanism. A modified-Fickean diffusion model was designed to simulate the water-vapor diffusion phenomena in porous paper web. Structural characterisocs of paper pores including the tortuosity and the shape factor was studied on a theoretical basis of Knudsen flow diffusion. Results are summarized as follows: 1. The theoretical water vapor diffusivity in gas-phase was 0.092$cm^2$ /min, 2. Porosity was inversely proportional to the degree of wet-swelling of paper, 3. Solid-phase water-diffusivity of fiber was 1.2 $ \times 10^{-5}cm^2/min$, 4. Modified diffusion model was fairly consistent to the experimental data (from part I), and 5. The Fickean pore tortuosity, ranging from 1,000 to 2,500, was in inverse proportion to the porosity of paper, and the Knudsen shape factor and length-angle factor for micro-pores in paper were 0.5~3.5 and about 340, respectively.

  • PDF

Characteristic Evaluation of the Fe-Al Alloy Preform Fabrication by Reactive Sintering Process for the Al Matrix Composites. (반응소결법으로 제조한 Al기 복합재용 Fe-Al합금 예비성형체의 특성평가)

  • Choi, Dap-Chon;Park, Sung-Hyuk;Joo, Hyung-Gon
    • Journal of Korea Foundry Society
    • /
    • v.19 no.6
    • /
    • pp.493-500
    • /
    • 1999
  • Squeeze casting was used for fabricating a light metal base composite having high strength and wearresistance. Reactive sintering was used to prepare the preform of Squeeze casting. To utilize Fe-Al intermetallic compounds and SiC particle as a reinforcement, there needs to prepare Fe-Al mixed powder at 50, 60, 70at.%Al, and add SiC powder to the above mixture at 4, 7, 16, 24wt.%. The prepared mixture with SiC was reactive sintered in a tube furnace at $660^{\circ}C$ to get a porous hybrid preform of intermetallic compound and SiC. The preform prepared above was placed in a metal mold, preheated at $660^{\circ}C$ AC4C matrix was injected into the mold with the temperature of the melt at $610^{\circ}C$ After these processes, 66MPa was applied to the mold for 5 minute to finish the whole procedure. The maximum reaction temperature was increased with the increased Al amount, but decreased with the increased SiC amount. The density of the preform was decreased with SiC amount increase in the compacts due to swelling of the preform. An optical microscope was applied to observe the micro structure and the dispersion of the reinforcements. To analyze phases, We utilized XRD, EDS. Hardness test were chosen to get the information of mechanical properties. There were no significant changes in micro structure between the composite and preform. However, it was shown that uniform dispersion of the reinforcers and complete infiltration of the melt into the preform were achieved through the procedure of the squeeze casting. It was observed that the hardness of the composite is decreased with increased SiC amount, resulting from the volumetric expansion of the preform.

  • PDF

A study on selective hybrid-structure film fabricated by 355nm UV-pulsed laser processing (355nm UV 레이저를 이용한 선택적 하이브리드 구조 필름의 제작에 관한 연구)

  • Kim, Myung-Ju;Lee, Sang-Jun;Shin, Bo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.2979-2984
    • /
    • 2015
  • This paper has presented a new foaming technology of selective hybrid-structured polymer film with expanded pores. The porous structure of closed pore was firstly fabricated by applying the 355nm UV-pulsed laser to 0.1mm thick film that was uniformly mixed with PP pellets, copper powder, and CBA (Chemical Blowing Agent). In order to expand pore size of closed-cell shape, LAMO(Laser Aided Micro pore Opening) processing was conducted to heat the copper powder, and then the bigger pore size of closed-cell more than existing pore size was successfully formed because of rapid conduction of heated metal powder. From the experimental results, various process parameters such as laser fluence, intensity, scan rate, spot size and density of powder and CBA were considerably considered to reveal the correlation among the pore characteristics. In the future, a function experiment will be carried out to use the hybrid film of industrial applications.