• Title/Summary/Keyword: Micro pore

Search Result 336, Processing Time 0.029 seconds

A Study on the Performance Improvement and Long-Term Strength Properties of Eco-cement Concrete (에코시멘트 콘크리트의 장기강도 특성 및 성능 향상 방안에 관한 연구)

  • Park, Kwang-Min;Lee, Gun-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.817-826
    • /
    • 2011
  • Concrete using eco-cement has a problem with long-term strength development. However, currently, a long-term strength development mechanism is not confirmed, resulting in a lack of application of eco-cement in construction fields. In this study, the curing humidity influence on development in long-term strength of concrete using eco-cement and the relationship between strength and pore structure were examined. The results showed that wet cured eco-cement with a high water/cement ratio showed serious long-term strength reduction due to non-reduction of pore volume (pore size over 10 nm) in mortar caste with eco-cement. Also, the study results on improvement of long-term strength of eco-cement by partial replacement with ordinary portland cement and finely-ground fly ash showed that both of these alternatives improved long-term strength of concrete caste with eco-cement due to gradual refinement of their micro-structure.

Fabrication and Characterization of Biphasic Calcium Phosphate Scaffolds with an Unidirectional Macropore Structure Using Tertiary-Butyl Alcohol-Based Freeze-Gel Casting Method (동결-젤 주조 공정 기반 삼차부틸알코올을 이용한 단일방향 기공구조를 가지는 이상인산칼슘 세라믹 지지체의 제조 및 특성평가)

  • Kim, Kyeong-Lok;Ok, Kyung-Min;Kim, Dong-Hyun;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.4
    • /
    • pp.263-268
    • /
    • 2013
  • Porous biphasic calcium phosphate scaffolds were fabricated by a freeze-gel casting technique using a tertiary-butyl alcohol (TBA)-based slurry. After sintering, unidirectional macropore channels of scaffolds aligned regularly along the TBA ice growth direction were tailored simultaneously with micropores formed in the outer wall of the pore channels. The crystallinity, micro structure, pore configuration, bulk density, and compressive strength for the scaffolds were investigated with X-ray diffractometery, scanning electron microscopy analysis, a water immersion method, and a universal test machine. The results revealed that the sintered porosity and pore size generally resulted in a high solid loading which resulted in low porosity and small pore size, which relatively increased the higher compressive strength. After being sintered at $1100-1300^{\circ}C$, the scaffolds showed an average porosity and compressive strength in the range 35.1-74.9% and 65.1-3.0 MPa, respectively, according to the processing conditions.

Effect of Polymer Structure on Membrane Morphology by Addition of 2-butoxyethanol (2-butoxyethanol 첨가에 따른 고분자 구조가 분리막 구조에 미치는 영향)

  • Son, Ye-Ji;Kim, No-Won
    • Membrane Journal
    • /
    • v.21 no.4
    • /
    • pp.377-388
    • /
    • 2011
  • Flat sheet microfiltration membranes were prepared with polysulfone (PSF), polyethersulfone (PES), and polyphenylsulfone (PPS) by an immersion precipitation phase inversion method. In this method, dimethyl formamide (DMF) and polyvinylpyrrolidone (PVP) were used as a solvent and a wetting polymer additive, respectively. 2-butoxyethanol (BE) was used as a nonsolvent additive catalyst to form pore. The morphology of membranes was investigated by scanning electron microscopy and micropermporometer. The permeability of the membranes was evaluated with the flux of pure water. When the BE was added, the pore size of membranes became larger than blank membranes. The changes in the morphology of membrane due to the BE addition depend on polymer structure. All membranes have similar mean pore size and porosity. The mean pore sizes of PSF, PES, and PPS membranes were 0.282, 0.330 $0.308{\mu}m$, respectively. The porosities of PSF, PES and PPS membranes were 68.5, 66.1, 66.4%, respectively. However, the PPS membrane showed higher pore density on surface and narrower pore size distribution than PSF or PES membrane does. As a result, the pure water flux of PPS membrane ($357L/m^2\;hr$) was higher than that of PSF ($196L/m^2\;hr$) or PES membrane ($214L/m^2\;hr$).

The Evaluation of Fabrication Parameters Process Effect on the Formation of Poly(lactic-co-glycolic acid) (PLGA) Microspheres

  • Bao, Trinh-Quang;Lee, Byong-Taek
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1465-1470
    • /
    • 2011
  • In this study, a poly(lactic-co-glycolic acid) (PLGA) microspheres was fabricated using emulsion solvent evaporation technique. During the procedure fabrication, some parameters process have effected on the formation of micro-carriers. The structure and morphology of micro-carriers were evaluated by SEM observation. Beside, heparin incorporated into microspheres was determined using toluidine blue method. Specifically, the effects of some parameters process such as ultrasonic levels, PLGA concentrations and freeze-dry times on the size, structure, porous formation and heparin entrapment of micro-carriers were studied carefully. We found that, the morphology and structure of carriers were influenced by the all above parameters. The diameter of the carriers varied from 20 to 400 ${\mu}M$ depending on experimental conditions. At suitable freeze-dry time, the pores were automatically formation on surface of microspheres with a significantly in the numbers of pore. After heparin incorporated porous PLGA microspheres, it was suggested that the highly heparin incorporated into porous PLGA microspheres could enhance of angiogenesis for tissue regeneration easily.

Surface Characterization of the Activated Carbon Fibers After Plasma Polymerization of Allylamine

  • Lu, Na;Tang, Shen;Ryu, Seung-Kon;Choi, Ho-Suk
    • Carbon letters
    • /
    • v.6 no.4
    • /
    • pp.243-247
    • /
    • 2005
  • Plasma polymerization of allylamine subsequently after plasma pre-treatment was conducted on the activated carbon fibers (ACFs) for the immobilization of amine groups in the surface of ACFs. The change of structural properties of ACFs with respect to different polymerization conditions was investigated through BET method. The change of surface morphologies of ACFs with respect to different plasma polymerization power was also studied through AFM. It was found that the structural properties such as specific surface area and micropore volume could be optimized under certain plasma deposition conditions. It was reckoned that treatment and deposition showed adverse effect on plasma polymerization, in which the former developed the micro-structures of the ACFs and the latter tended to block the micro pores. The Fourier transform infrared spectroscopy (FTIR) revealed that the poly(allylamine) was successfully immobilized on the surface of ACFs and the amount of the deposited polymer layer was related to the plasma polymerization power. SEM results showed that the plasma deposited polymer layer were small and homogenously distributed. The size and the distribution of particles deposited were closely related to the plasma polymerization power, too.

  • PDF

Miniaturized Methanol Sensor with Porous Pt-Au Electrode (다공성 Pt-Au 전극을 이용한 초소형 메탄올 센서)

  • Kim, Jung-Doo;Lee, Yi-Jae;Park, Jae-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1539_1540
    • /
    • 2009
  • 본 논문에서는 Porous Au-Pt 전극을 기반으로 연료전극과 공기전극으로 구성된 초소형 메탄올 센서를 설계 및 제작하고 그 특성을 분석해 보았다. 제안된 Porous Au-Pt 전극은 Porous 구조의 금속을 만드는 방법 중 하나인 Templating기법을 적용하여 수백나노 크기의 Pore들을 가진 Porous Au 전극을 제작하였고 그 위에 수 나노 크기의 Pt particles을 전해 도금하여 제작되었다. 고분자 전해질막 층으로서 Nafion film은 전해 도금한 Porous Au-Pt 전극 사이에 삽입하고 hot Pressing 통하여 센서를 구성하였다. Porous Au-Pt 전극을 기반으로한 전기화학 메탄올 센서는 $0.25\;cm^2$ 의 작은 전극 면적에도 불구하고 넓은 온도 범위 ($20^{\circ}C-100^{\circ}C$) 에서 온도에 따른 뛰어난 선형성(Correlation coefficient = 0.986)을 보였으며, 특히, 일정온도 ($60^{\circ}C$)에서 메탄올 농도 0 M에서 2 M 까지의 전류응답 특성을 측정, 분석 결과 메탄올 농도에 따른 9.6 mA/$mM{\cdot}cm^2$ 의 민감도 및 10 초 이내의 응답시간 특성을 보였다.

  • PDF

Analysis of 3D Geometry and Compressive Behavior of Aluminum Open Cell Foam Using X-ray Micro CT (마이크로 X-ray CT를 활용한 알루미늄 개방형 폼의 형상 및 압축 거동 분석)

  • Kim, Y.I.;Kim, J.H.;Lee, J.K.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.518-523
    • /
    • 2011
  • The three dimensional geometries of an aluminum open cell foam before and after uniaxial compressive loading were investigated using the X-ray micro CT(computed tomography). Aluminum 6101-T6 open cell foams of 10, 20, 40 ppi (pore per inch) were considered in this work. After the serial sectioning CT images of aluminum foams were obtained from non-destructive X-ray images, the exact 3D structure were reproduced and visualized with commercial image processing program. The relative density ratio was around the 7.0 to 9.0 range, the unit cells showed anisotropic shapes having the different dimensional ratios of 1.1 to 1.3 between the rise and the transverse directions. The yield stress increased with the relative density ratio and the volumetric strain increased proportionally with compressive strain. The plateau stress in the compressive stress-strain curve was caused by the buckling of ligaments.

Characteristics of Calcium Leaching Resistance for Concrete Mixed with Mineral Admixture (광물질 혼화재를 혼합한 콘크리트의 칼슘용출 저항 특성)

  • Choi, So-Yeong;Choi, Yoon-Suk;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.59-67
    • /
    • 2016
  • Concrete is a very useful construction material for the sealing disposal of hazardous substances. In general, mass concrete is applied to these structures. And, the mineral admixtures are recommended for the long term performance. Calcium leaching could be happened due to the contact with pure water in underground structures. Thus, it is needed to evaluate the resistance of calcium leaching for concrete mixed with mineral admixtures. From the test results, the mineral admixtures are effective to the improvement of long term compressive strength and chloride diffusion coefficient in concrete members. When calcium leaching is happened, however, the reduction of compressive strength and chloride penetration resistance is severe than OPC case, the micro pore distribution is adversely affected. Consequently, when the mineral admixtures are applied to underground structures which is exposed to calcium leaching environment, it is desirable to reduce water-to-binder ratio, to expose after the sufficient pozolanic reaction, and to use BFS than FA.

A study on the Mechanical Properties of Concrete using Electronic Waste as Fine Aggregate (전자폐기물을 잔골재로 적용한 콘크리트의 역학적 특성에 관한 연구)

  • Kim, Yong-Moo;Choi, So-Yeong;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.90-97
    • /
    • 2018
  • The quantities of electronic waste have been increased rapidly, and was caused variety problems such as environmental pollution or dissipation of resource. So, it needed to development of recycling technology about heavy metal in the electronic waste. Meanwhile, filler material (concrete or mortar) was used for shielding radioactive waste, however, it did not used materials that it is proved radiation shielding performance. So, there is a lack of confidence in the shielding performance. Therefore, in this paper, mechanical properties of concrete was evaluated for the applicability using electronic waste as fine aggregate of filler material. From the test results, compressive and flexural strength and elasticity modulus and the micro pore in the $1{\mu}m$ range was significantly affected by substitution of electronic waste, however, it could be improved the performance by using mineral admixture as binder. So, it is shown that the electronic waste could be applicable as fine aggregate of filler material.

Study on Microstructure and Physical Properties of PUF by the Impeller Type of Agitator (교반기의 임펠러 형태에 따른 폴리우레탄 폼의 미세구조와 물성 연구)

  • Lee, Chae-Rim;Kim, Jung Soo;Park, Byeongho;Um, Moon-Kwang;Park, Teahoon
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.16-22
    • /
    • 2021
  • Polyurethane foam (PUF) can be manufactured in soft, semi-rigid, and hard forms, so it is used in various fields industrially. Among them, rigid PUF has excellent mechanical properties and low thermal conductivity, and is used as a thermal insulation material for buildings and as a cold insulation material in the natural gas transportation field. In this field, there is a steady demand on higher mechanical strength and lower thermal conductivity. In this study, a rigid PUF was manufactured, and the microstructure and physical properties were studied according to the impeller type (propeller, dispersed turbine) of the agitator. Through FE-SEM and Micro-CT analysis, it was confirmed that the average pore size of the foam manufactured with the dispersed turbine was 21.5% smaller than that of the pore made by the propeller. The compressive strength was improved by 15.4%, and the thermal conductivity decreased by 3.1% in the foam with small pores. This result can be utilized for fabricating PUF composites.