• Title/Summary/Keyword: Micro particles

Search Result 737, Processing Time 0.03 seconds

Experimental Studies on the Motion and Discharge Behavior of Free Conducting Wire Particle in DC GIL

  • Wang, Jian;Wang, Zhiyuan;Ni, Xiaoru;Liu, Sihua
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.858-864
    • /
    • 2017
  • This study aims to restrain free conducting wire-type particles which are commonly and dangerously existing within DC gas-insulated transmission lines. A realistic platform of a coaxial cylindrical electrode was established by using a high-speed camera and a partial discharge (PD) monitor to observe the motion, PD, and breakdown of these particles. The probabilities of standing or bouncing, which can be affected by the length of the particles, were also quantitatively examined. The corona images of the particles were recorded, and particle-triggered PD signals were monitored and extracted. Breakdown images were also obtained. The air-gap breakdown with the particles was subjected to mechanism analysis on the basis of stream theory. Results reveal that the lifting voltage of the wire particles is almost irrelevant to their length but is proportional to the square root of their radius. Short particles correspond to high bouncing probability. The intensity and frequency of PD and the micro-discharge gap increase as the length of the particles increases. The breakdown voltage decreases as the length of the particles decreases.

미세도구를 사용한 미세크기의 우라늄입자 취급기술 (Techniques for Handling Uranium Particles with Micro-tools)

  • 표형열;박용준;손세철;전영신;송병철;지광용;김원호
    • 분석과학
    • /
    • 제13권4호
    • /
    • pp.440-445
    • /
    • 2000
  • 흔적량 입자분석을 위해서는 흔적량의 입자를 다룰수 있는 미세도구가 필요하며 이들을 능숙하게 다룰수 있는 기술 또한 필수적이다. 본 연구에서는 다양한 미세도구들의 제작 및 사용방법을 소개하고 원자력 시설의 먼지시료 중 존재하는 우라늄입자의 동위원소비를 측정하였으며 이 결과로부터 미신고 핵활동 시설에서 사용한 우라늄의 종류를 알아 낼 수 있는 기술의 가능성을 확인하였다. 원자력 시설내의 오염가능 지역에서 기기의 표면 또는 바닥을 여과지로 문질러 시료를 채취하였고 먼지 중 존재하는 흔적량의 우라늄입자는 고체트랙 검출기를 이용하여 참아내었으며, 찾은 미세크기의 우라늄 입자는 미세도구를 사용하여 절단 분리한 후 TIMS의 필라멘트로 옮겨서 우라늄입자의 동위원소 비를 측정하였다.

  • PDF

EWOD(Electro-Wetting on Dielectric)에 의한 초소수성 표면에서의 액적 이동과 부유물의 영향 (The droplet movement on the super-hydrophobic surface by the electro-wetting on dielectric and the effect of particles)

  • 변도영;이영종
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.297-300
    • /
    • 2006
  • This article discusses about the droplet movement on the super-hydrophobic surface by the electro-wetting on dielectric and the effect of particles on the contact angle as well as the movement is investigated. The movement of droplet, driven by the principle of electro-wetting on dielectric, and the effect of particles are experimentally verified according to the driving voltage and different particles concentrations (fluorescent, charged particles). To increase the contact angle, the super-hydrophobic surface is fabricated and applied to the dielectric layer for the EWOD device. Then its performance is verified and discussed.

  • PDF

Fabrication of Colloidal Clusters of Polymer Microspheres and Nonspherical Hollow Micro-particles from Pickering Emulsions

  • Cho, Young-Sang;Kim, Tae-Yeol;Yi, Gi-Ra;Kim, Young-Kuk;Choi, Chul-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권1호
    • /
    • pp.159-166
    • /
    • 2012
  • We have introduced the Pickering emulsion systems to generate novel confining geometries for the selforganization of monodisperse polymer microspheres using nanoparticle-stabilized emulsion droplets encapsulating the building block particles. Then, through the slow evaporation of emulsion phases by heating, these microspheres were packed into regular polyhedral colloidal clusters covered with nanoparticle-stabilizers made of silica. Furthermore, polymer composite colloidal clusters were burnt out leaving nonspherical hollow micro-particles, in which the configurations of the cluster structure were preserved during calcination. The selfassembled porous architectures in this study will be potentially useful in various applications such as novel building block particles or supporting materials for catalysis or gas adsorption.

입자 구형도에 따른 레이저 선가공의 비구형 흄 마이크로 입자 산포 특성 연구 (Dispersion Characteristics of Nonspherical Fume Micro-Particles in Laser Line Machining in Terms of Particle Sphericity)

  • 김경진;박중윤
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.1-6
    • /
    • 2022
  • This computational investigation of micro-sized particle dispersion concerns the fume particle contamination over target surface in high-precision laser line machining process of semiconductor and display device materials. Employing the random sampling based on probabilistic fume particle generation distributions, the effects of sphericity for nonspherical fume particles are analyzed for the fume particle dispersion and contamination near the laser machining line. The drag coefficient correlation for nonspherical particles in a low Reynolds number regime is selected and utilized for particle trajectory simulations after drag model validation. When compared to the corresponding results by the assumption of spherical fume particles, the sphericity of nonspherical fume particles show much less dispersion and contamination characteristics and it also significantly affects the particle removal rate in a suction air flow patterns.

광력을 이용한 입자 분리 장치 (Particle Separator using Radiation Force)

  • 김상복;윤상열;김상수;성형진
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.55-58
    • /
    • 2007
  • To improve the conventional optical chromatography, the continuous particle separator, the cross-type optical chromatography, is fabricated using micro-channel and fiber optics. A laser beam irradiates into the liquid solution containing particles in the perpendicular to the liquid flow direction. The different sized polystyrene latex micro-spheres, $2.0\;{\mu}m\;{\pm}\;0.02\;{\mu}m$, $5.0\;{\mu}m\;{\pm}\;0.05\;{\mu}m$, and $10.0\;{\mu}m\;{\pm}\;0.09\;{\mu}m$ diameter, are separated in cross-type optical chromatography. The separated particles are delivered to down stream in the micro-channel maintaining the retention distance continuously. The measured retention distances for different sized particles well agree with theoretical predictions.

  • PDF

금속 입자 크기가 토양 미생물 군집과 메밀에 미치는 영향 (Effects of Size of Metal Particles on Soil Microbial Community and Buck Wheat)

  • 김성현;김정은;곽영지;김연지;이인숙
    • 한국환경과학회지
    • /
    • 제20권4호
    • /
    • pp.457-463
    • /
    • 2011
  • This study was carried out to compare the toxicity of nano and micrometer particles with Cu and Zn on soil microbial community and metal uptake of buck wheat. In microcosm system, soil was incubated for 14 days after soil aliquots were artificially contaminated with 1,000 mg/kg Cu, Zn nano and micro particles, respectively. After then, buck wheat was planted in incubating soils and non incubating soils. After 14 days, we compared bioaccumulation of metal, and microbial carbon substrate utilization patterns between incubating soils and non-incubating soils. The enrichment factor (EF) values of incubating samples were greater than non-incubating soils. Dehydrogenase activity had been inhibited by Cu and Zn nanoparticles in non-incubating soil, as well as it had been inhibited by Zn micro particles in incubating soils. Results of biolog test, it was not significant different between nano particles and micro particles. It cannot be generalized that nanoparticles of metal are always more toxic to soil microbial activity and diversity than micrometer-sized particles and the toxicity needs to be assessed on a case-by-case basis.

Fabrication, characterization, simulation and experimental studies of the ordinary concrete reinforced with micro and nano lead oxide particles against gamma radiation

  • Mokhtari, K.;Kheradmand Saadi, M.;Ahmadpanahi, H.;Jahanfarnia, Gh.
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.3051-3057
    • /
    • 2021
  • The concrete is considered as an important radiation shielding material employed widely in nuclear reactors, particle accelerators, laboratory hot cells and other different radiation sources. The present research is dedicated to the shielding properties study of the ordinary concrete reinforced with different weight fractions of lead oxide micro/nano particles. Lead oxide particles were fabricated by chemical synthesis method and their properties including the average size, morphological structure, functional groups and thermal properties were characterized by XRD, FESEM-EDS, FTIR and TGA analysis. The gamma ray mass attenuation coefficient of concrete composites has been calculated and measured by means of the Monte Carlo simulation and experimental methods. The simulation process was based on the use of MCNP Monte Carlo code where the mass attenuation coefficient (μ/ρ) has been calculated as a function of different particle sizes and filler weight fractions. The simulation results showed that the employment of the lead oxide filler particles enhances the mass attenuation coefficient of the ordinary concrete, drastically. On the other hand, there are approximately no differences between micro and nano sized particles. The mass attenuation coefficient was increased by increasing the weight fraction of nanoparticles. However, a semi-saturation effect was observed at concentrations more than 10 wt%. The experimental process was based on the fabrication of concrete slabs filled by different weight fractions of nano lead oxide particles. The mass attenuation coefficients of these slabs were determined at different gamma ray energies using 22Na, 137Cs and 60Co sources and NaI (Tl) scintillation detector. The experimental results showed that the HVL parameter of the ordinary concrete reinforced with 5 wt% of nano PbO particles was reduced by 64% at 511 keV and 48% at 1332 keV. Reasonable agreement was obtained between simulation and experimental results and showed that the employment of nano PbO particles is more efficient at low gamma energies up to 1Mev. The proposed concrete is less toxic and could be prepared in block form instead of toxic lead blocks.

Application of Microbeam Technique to Atmospheric Science

  • Ma Chang-Jin
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2005년도 추계학술대회 논문집
    • /
    • pp.67-74
    • /
    • 2005
  • Microbeam PIXE, often called micro-PIXE, is a powerful tool tot analyzing a wide range of elements for various samples, as well as, it has important applications of interest to the atmospheric science. In this study, qualitative elemental imagination for various atmospheric environmental species was attempted using micro-PIXE. Here, we present the results of an application of micro-PIXE to the study of atmospheric environment. The detailed spatial resolution of multiple elements lot various samples like individual ambient particles, individual raindrops, individual fog droplets, and individual snow crystals could be successfully achieved by scanning 2.6 MeV H+ micro beam (1-2 ${\mu}m$) accelerated by 3 MV single-end accelerator.

  • PDF

Micro Metal Injection Molding Using Hybrid Micro/Nano Powders

  • Nishiyabu, Kazuaki;Kakishita, Kenichi;Osada, Toshiko;Tanaka, Shigeo
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.36-37
    • /
    • 2006
  • This study aims to investigate the usage of nano-scale particles in a micro metal injection molding ($\mu$-MIM) process. Nanoscale particle is effective to improve transcription and surface roughness in small structure. Moreover, the effects of hybrid micro/nano particles, Cu/Cu and SUS/Cu were investigated. Small dumbbell specimens were produced using various feedstocks prepared by changing binder content and fraction of nano-scale Cu particle (0.3 and $0.13{\mu}m$ in particle size). The effects of adding the fraction of nano-scale Cu powder on the melt viscosity of the feedstock, microstructure, density and tensile strength of sintered parts were discussed.

  • PDF