• Title/Summary/Keyword: Micro part

Search Result 682, Processing Time 0.031 seconds

Convolutional neural network of age-related trends digital radiographs of medial clavicle in a Thai population: a preliminary study

  • Phisamon Kengkard;Jirachaya Choovuthayakorn;Chollada Mahakkanukrauh;Nadee Chitapanarux;Pittayarat Intasuwan;Yanumart Malatong;Apichat Sinthubua;Patison Palee;Sakarat Na Lampang;Pasuk Mahakkanukrauh
    • Anatomy and Cell Biology
    • /
    • v.56 no.1
    • /
    • pp.86-93
    • /
    • 2023
  • Age at death estimation has always been a crucial yet challenging part of identification process in forensic field. The use of human skeletons have long been explored using the principle of macro and micro-architecture change in correlation with increasing age. The clavicle is recommended as the best candidate for accurate age estimation because of its accessibility, time to maturation and minimal effect from weight. Our study applies pre-trained convolutional neural network in order to achieve the most accurate and cost effective age estimation model using clavicular bone. The total of 988 clavicles of Thai population with known age and sex were radiographed using Kodak 9000 Extra-oral Imaging System. The radiographs then went through preprocessing protocol which include region of interest selection and quality assessment. Additional samples were generated using generative adversarial network. The total clavicular images used in this study were 3,999 which were then separated into training and test set, and the test set were subsequently categorized into 7 age groups. GoogLeNet was modified at two layers and fine tuned the parameters. The highest validation accuracy was 89.02% but the test set achieved only 30% accuracy. Our results show that the use of medial clavicular radiographs has a potential in the field of age at death estimation, thus, further study is recommended.

Anatomical study of the bone morphology of the anterior talofibular ligament attachment

  • Hitomi Fujishiro;Akimoto Nimura;Mizuki Azumaya;Soichi Hattori;Osamu Hoshi;Keiichi Akita
    • Anatomy and Cell Biology
    • /
    • v.56 no.3
    • /
    • pp.334-341
    • /
    • 2023
  • Anterior talofibular ligament (ATFL) injuries are the most common cause of ankle sprains. To ensure anatomically accurate surgery and ultrasound imaging of the ATFL, anatomical knowledge of the bony landmarks around the ATFL attachment to the distal fibula is required. The purpose of the present study was to anatomically investigate the ATFL attachment to the fibula with respect to bone morphology and attachment structures. First, we analyzed 36 feet using micro-computed tomography. After excluding 9 feet for deformities, the remaining 27 feet were used for chemically debrided bone analysis and macroscopic and histological observations. Ten feet of living specimens were observed using ultrasonography. We found that a bony ridge was present at the boundary between the attachments of the ATFL and calcaneofibular ligament (CFL) to the fibula. These two attachments could be distinguished based on a difference in fiber orientation. Histologically, the ATFL was attached to the anterodistal part of the fibula via fibrocartilage anterior to the bony ridge indicating the border with the CFL attachment. Using ultrasonography in living specimens, the bony ridge and hyperechoic fibrillar pattern of the ATFL could be visualized. We established that the bony ridge corresponded to the posterior margin of the ATFL attachment itself. The ridge was obvious, and the superior fibers of the ATFL have directly attached anteriorly to it. This bony ridge could become a valuable and easy-to-use landmark for ultrasound imaging of the ATFL attachment if combined with the identification of the fibrillar pattern of the ATFL.

Service Design for Healthcare Quality Improvement: An Implementation Approach for Enhancing Patient Experience (의료 질 향상을 위한 서비스디자인: 환자경험 증진을 위한 실행 접근법)

  • Jung-Ha Ku;Un-Hyung Ryu;Young-Dae Kwon
    • Quality Improvement in Health Care
    • /
    • v.29 no.2
    • /
    • pp.47-63
    • /
    • 2023
  • Purpose:This study aims to suggest the future direction for applying service design to improve the quality of healthcare as part of hospital service innovation and present implementation plans in Korea, based on a review of quality improvement activities and the current status of service design applications. Methods: Through a literature review, we examined the status of service design introduction and application in the healthcare field, focusing on cases in the US and Europe. The possibility and limitations of service design in the healthcare field were examined through a comparison of oversea and domestic cases. Results: Recently, service design has begun to be applied to the healthcare field worldwide. Service design shows the possibility of an alternative that alleviates and complements the limitations of existing quality improvement activities. It also offers the possibility of creating new organizational improvement and innovation approaches through integration and convergence with existing quality improvement activities and management innovation. Conclusion: To effectively apply service design to hospitals, it is necessary to integrate internal organizations related to service improvement, combine methods, and objectively measure and evaluate performance. To this end, we propose the operation of a nationwide education and training center for quality improvement and service design led by academic society. Service design will provide an opportunity to change the management innovation and organizational culture of hospitals beyond the scope of the current quality improvement, which deals only with micro-subjects of individual hospitals.

Comparison of the Plant Characteristics and Nutritional Components between GM and Non-GM Chinese Cabbages Grown in the Central and Northern Parts of Korea (중·북부지역에서 재배된 GM 배추와 Non-GM 배추간의 식물체 특성 및 영양 성분 비교 분석)

  • Cho, Dong-Wook;Oh, Jin-Pyo;Park, Kuen-Woo;Lee, Dong-Jin;Chung, Kyu-Hwan
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.836-844
    • /
    • 2010
  • This study was carried out to investigate plant characteristics and nutritional components of the genetically modified (GM) Chinese cabbage and its control line grown in the central and northern parts of Korea in order to establish the evaluating protocol and standard assessment. The GM and non-GM Chinese cabbage was planted with normal and concentrated density at two locations in spring and fall of 2008 and 2009. From the statistic analysis on plant characteristics and nutritional components, there were not many significant differences between GM and non-GM Chinese cabbage. Only few differences in the plant characteristics were found between the dense and normal planting. In the dense planting, there was no significant difference between GM and non-GM Chinese cabbages except for three out of 18 plant traits, such as leaf shape, hairiness and midrib length. On the other hand, nine plant traits including leaf length, leaf width, leaf color, leaf shape, fresh weigh of ground part, number of leaf, midrib length, midrib width and root diameter were slightly different between GM and non-GM Chinese cabbage in the normal planting. In case of leaf length, midrib length, midrib width and fresh weigh of ground part, there were significantly differences not only between two lines, but also between two locations. From nutritional component analysis, only five fatty acids were identified in the Chinese cabbage: palmitic acid, oleic acid, stearic acid, linoleic acid and linolenic acid. Except linoleic acid, four fatty acids in one gram of dried sample from GM line were little higher than those from non-GM line. However, there were no significant differences in total contents of fatty acids not only between GM and non-GM Chinese cabbage line, but also between northern and central cultivating areas in the normal and dense planting. According to the composition of inorganic elements identified in the samples from both lines, there were six macro-elements, such as N, P, Ca, K, Mg and Na, and four micro-elements, Cu, Fe, Mn and Zn. Based on the result from PCA analysis, specific clusters were not found between GM Chinese cabbage and the control line, but found between two regions.

Gravity Field Interpretation for the Deep Geological Structure Analysis in Pohang-Ulsan, Southeastern Korean Peninsula (한반도 남동부 포항-울산지역 심부 지질구조 분석을 위한 중력장 해석)

  • Sohn, Yujin;Choi, Sungchan;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.597-608
    • /
    • 2020
  • Even after the Gyeongju earthquake and the Pohang earthquake, hundreds of aftershocks and micro-earthquakes are still occurring in the southeastern part of the Korean Peninsula. These phenomena mean that the stress is constantly working, implying that another huge earthquake may occur in the future. Therefore, the gravity field interpretation method was used to analyze the deep geological structure of the Pohang-Ulsan region in the southeastern Korean Peninsula. First, a gravity survey was performed to collect the insufficient data and to calculate the detailed Bouguer gravity anomaly in the study area. Based on the gravity anomaly data, the location, direction, and maximum depth of deep fault lines were analyzed using the inversion methods "Curvature analysis" and "Euler deconvolution method". As a result, it is interpreted that at least six fault lines(C1~C6) exist in deep depth. The deep fault line C1 is well correlated to the Yeonil Tectonic Line(YTL), suggesting that YTL is extended up to about 4000m deep. The deep fault line C2 consists of several segment faults and well correlated to the fault lines on the surface. Inferred fault lines C3, C4, and C5 have an NW-SE direction, which is parallel to the Ulsan fault. The deep fault line C6 has the direction of NE-SW, and it is interpreted that the eastern boundary fault of Eoil Basin is extended to the deep. Comparing the inferred fault lines with the distribution of micro-earthquakes, the location of the deep fault line C1 is well correlated to the hypocenter of micro-earthquakes. This implies that faults in deep depth are related to the recent earthquakes in the southeastern Korean Peninsula.

Empirical Study of Simple Grade Facilities Gap Utilizing Micro Simulation Analysis (Micro Simulation을 활용한 도시부 단순입체시설 분합류 구간간격에 관한 실증연구)

  • Kim, Young-Il;Rho, Jeong-Hyun;Kim, Tae-Ho;Park, Jun-Tae
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.63-72
    • /
    • 2012
  • Current analysis method drives an irrationality a road, signal operation and cause confusion of road such as weaving, bottleneck being not including main traffic flow in analysis subject. Therefore, this research develops analysis method of simple grade facilities to grasp target equipment relationship effect as virtue process to grasp effect of simple grade facilities in city and there is the purpose to apply optimum space of analysis intersection. In this paper, get at effect of simple grade facilities in urban area, as well as, develop new analysis method of simple grade facilities and adapt optimal interval of intersection point. New method of this paper reasonably estimated to optimal interval of the traffic flow(diverge area, merge area). As research result, analysis method to present in this research could clarify vague part of existing analysis method and presume reasonable result. Optimal interval of diverge and merge area with facilities was appeared more then 65m from the main line and more then 45m from the frontage road. Meaning of this paper as follow. First, the effect of simple grade facilities estimate. as consider optimal interval of simple grade facilities in urban can plan efficiently operation planning of road and signal in connection with nearby intersection. Second, new method then previous methods. planner of transportation easily access due to run parallel with existing method. Third, new method is contained through traffic volumes. the existing method did not reflect one. and this new method reduce error to the minimum. when analysis of intersection and link. Fourth, using the new method propose improvement plan with road operation and signal operation.

Development and Application of Multi-Functional Floating Wetland Island for Improving Water Quality (수질정화를 위한 다기능 인공식물섬의 개발과 적용)

  • Yoon, Younghan;Lim, Hyun Man;Kim, Weon Jae;Jung, Jin Hong;Park, Jae-Roh
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.221-230
    • /
    • 2016
  • Multi-functional floating wetland island (mFWI) was developed in order to prevent algal bloom and to improve water quality through several unit purification processes. A test bed was applied in the stagnant watershed in an urban area, from the summer to the winter season. For the advanced treatment, an artificial phosphorus adsorption/filtration medium was applied with micro-bubble generation, as well as water plants for nutrient removal. It appeared that the efficiency of chemical oxygen demand (COD) and total phosphorus (T-P) removal was higher in the warmer season (40.9%, 45.7%) than in the winter (15.9%, 20.0%), and the removal performance (suspended solid, chlorophyll a) in each process differs according to seasonal variation; micro-bubble performed better (33.1%, 39.2%) in the summer, and the P adsorption/filtration and water plants performed better (76.5%, 59.5%) in the winter season. From the results, it was understood that the mFWI performance was dependent upon the pollutant loads in different seasons and unit processes, and thus it requires continuous monitoring under various conditions to evaluate the functions. In addition, micro-bubbles helped prevent the formation of anaerobic zones in the lower part of the floating wetland. This resulted in the water circulation to form a new healthy aquatic ecosystem in the surrounding environment, which confirmed the positive influence of mFWI.

Bakanae Disease Reduction Effect by Use of Silicate Coated Seed in Wet Direct-Seeded Rice (규산코팅 벼 종자를 이용한 담수직파재배 시 벼 키다리병 경감효과)

  • Kang, Yang-Soon;Kim, Wan Joong;Kim, Yeon Ju;Jung, Ki-Hong;Choi, Ul-Su
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.1
    • /
    • pp.9-16
    • /
    • 2016
  • To investigate the effect of soluble silicate zeolite dressing of the rice against bakanae disease, field trial in reclaimed land and in vitro were carried out. The coated rice seeds (SCS) which were dressed with the mixture of 25% silicic acids (binder), and the zeolite (coating powder). In wet direct seeding, uniform scattering of rice seeds on the soil surface and the better seedling establishment were shown in SCS treatment plots. The incidence of bakanae disease began from the mid tillering stage toward the heading stage. Around heading stage, the ratio of infected tillers reached its highest point by 9.9% in non-SCS treatment plots. While, in SCS treatment plots, the ratio of infected tillers was no more than 0.01%. The vitality of the pathogenic fungi of bakanae disease in the SCS and non-SCS samples were assessed. Samples were incubated for one week keeping proper humidity at $30^{\circ}C$ after inoculated with panicles of infected rice plants from experimental field plots. In non-SCS treatment, pinkish colonies were formed on the grain surface of panicle of infected plants, and mycelium, macro-conidia and micro-conidia were developed actively inside part of infected grain inoculated. While in SCS treatment, micro-conidia and mycelium were not survived and the growth of macro-conidia, mycelia were greatly inhibited and withered. Based on the results, it is concluded that the environmental friendly control of bakanae disease by use of SCS is possible and soluble silicate can be applied as agents for replacement of seed disinfection.

Interpretation of Microscale Behaviors and Precision Measurement Monitoring for the Five-story and Seven-story Stone Pagodas from Cheongnyangsaji Temple Site in Gongju, Korea (공주 청량사지 오층석탑 및 칠층석탑의 정밀 계측모니터링과 미세거동 해석)

  • LEE Jeongeun;PARK Seok Tae;LEE Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.132-158
    • /
    • 2023
  • The five-story and seven-story stone pagodas at Cheongnyangsaji temple site in Gongju are located under the Sambulbong peak of Gyeryongsan mountain, and are known to have been built of the middle in Goryeo dynasty. As the two pagodas in which two types of Baekje stone pagoda coexist in one era, their historical and academic value are recognized. The seven-story pagoda was overturned by robbery in 1944, and as a result, the five-story pagoda was tilted. Although the two pagodas were restored in 1961, structural instability was continuously raised. In this study, measurement data accumulated from May 2021 to March 2022, and seasonal characteristics were reviewed, and the micro behavior of pagodas were analyzed according to temperature and precipitation during the same period. As a result, the micro thermoelastic behavior was repeated according to the daily temperature change in all sensors, and both the slope and the displacement showed microscale behavior. In the inclinometer, moisture containing the surface and inside of the stones repeated expansion and contraction due to temperature change, showing the micro movements. In particular, the upper part of the five-story pagoda moved up to 3.89° to the northwest, and the seven-story pagoda tilted up to 0.078° to the northeast. The maximum displacements were recorded as 0.127 and 0.149 mm in the five-story and the seven-story pagoda, respectively. These values tended to return to the original position at the end of the measurement, but did not recover completely, indicating a state requiring precise monitoring. The result obtained through the study can be used as basic data for the stable conservation of the two stone pagodas. Based on the behavioral characteristics considering various environmental factors should be analyzed, and the preventive conservation through the maintenance of measurement system built this time should be continued.

Phytoplankton Diversity and Community Structure Driven by the Dynamics of the Changjiang Diluted Water Plume Extension around the Ieodo Ocean Research Station in the Summer of 2020 (2020년 하계 장강 저염수가 이어도 해양과학기지 주변 해역의 식물플랑크톤 다양성 및 개체수 변화에 미치는 영향)

  • Kim, Jihoon;Choi, Dong Han;Lee, Ha Eun;Jeong, Jin-Yong;Jeong, Jongmin;Noh, Jae Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.924-942
    • /
    • 2021
  • The expansion of the Changjiang Diluted Water (CDW) plume during summer is known to be a major factor influencing phytoplankton diversity, community structure, and the regional marine environment of the northern East China Sea (ECS). The discharge of the CDW plume was very high in the summer of 2020, and cruise surveys and stationary monitoring were conducted to understand the dynamics of changes in environmental characteristics and the impact on phytoplankton diversity and community structure. A cruise survey was conducted from August 16 to 17, 2020, using R/V Eardo, and a stay survey at the Ieodo Ocean Research Station (IORS) from August 15 to 21, 2020, to analyze phytoplankton diversity and community structure. The southwestern part of the survey area exhibited low salinity and high chlorophyll a fluorescence under the influence of the CDW plume, whereas the southeastern part of the survey area presented high salinity and low chlorophyll a fluorescence under the influence of the Tsushima Warm Current (TWC). The total chlorophyll a concentrations of surface water samples from 12 sampling stations indicated that nano-phytoplankton (20-3 ㎛) and micro-phytoplankton (> 20 ㎛) were the dominant groups during the survey period. Only stations strongly influenced by the TWC presented approximately 50% of the biomass contributed by pico-phytoplankton (< 3 ㎛). The size distribution of phytoplankton in the surface water samples is related to nutrient supplies, and areas where high nutrient (nitrate) supplies were provided by the CDW plume displayed higher biomass contribution by micro-phytoplankton groups. A total of 45 genera of nano- and micro-phytoplankton groups were classified using morphological analysis. Among them, the dominant taxa were the diatoms Guinardia flaccida and Nitzschia spp. and the dinoflagellates Gonyaulax monacantha, Noctiluca scintillans, Gymnodinium spirale, Heterocapsa spp., Prorocentrum micans, and Tripos furca. The sampling stations affected by the TWC and low in nitrate concentrations presented high concentrations of photosynthetic pico-eukaryotes (PPE) and photosynthetic pico-prokaryotes (PPP). Most sampling stations had phosphate-limited conditions. Higher Synechococcus concentrations were enumerated for the sampling stations influenced by low-nutrient water of the TWC using flow cytometry. The NGS analysis revealed 29 clades of Synechococcus among PPP, and 11 clades displayed a dominance rate of 1% or more at least once in one sample. Clade II was the dominant group in the surface water, whereas various clades (Clades I, IV, etc.) were found to be the next dominant groups in the SCM layers. The Prochlorococcus group, belonging to the PPP, observed in the warm water region, presented a high-light-adapted ecotype and did not appear in the northern part of the survey region. PPE analysis resulted in 163 operational taxonomic units (OTUs), indicating very high diversity. Among them, 11 major taxa showed dominant OTUs with more than 5% in at least one sample, while Amphidinium testudo was the dominant taxon in the surface water in the low-salinity region affected by the CDW plume, and the chlorophyta was dominant in the SCM layer. In the warm water region affected by the TWC, various groups of haptophytes were dominant. Observations from the IORS also presented similar results to the cruise survey results for biomass, size distribution, and diversity of phytoplankton. The results revealed the various dynamic responses of phytoplankton influenced by the CDW plume. By comparing the results from the IORS and research cruise studies, the study confirmed that the IORS is an important observational station to monitor the dynamic impact of the CDW plume. In future research, it is necessary to establish an effective use of IORS in preparation for changes in the ECS summer environment and ecosystem due to climate change.