• Title/Summary/Keyword: Micro part

Search Result 682, Processing Time 0.026 seconds

Fabrication of thermally driven polysilicon micro actuator and its characterization (열풍동형 폴리실리콘 마이크로 액츄에이터의 제작 및 특성 분석)

  • 이종현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.146-150
    • /
    • 1996
  • A thermal micro actualtor has been fabricated using surface micromachining techniques. It consists of doped ploysilicon as a moving part and TEOS(Tetra Ethyl Ortho Silicate) as a sacrificial layer. The polysilicon was annealed for the reduction of residual stress which is the main cause to its deformation such as bending and buckling. And the newly developed HF VPE(vapor phase etching)process was also used as an effective release method for the elimination of sacrificaial layer. With noliquid involved during any of the steps for relasing, unlike other reported relase techniques, the HF VPE pocess has produced polysilicon microstructures with virtually no process-induced stiction problem. The actuation is incured by the thermal expasion due to current flow in active polysilicon cantilever, which motion is amplified bylever mechanism. The thickness of pllysilicon is 2 .mu. m and the length of active and passive polysilicon cantilever are 500 .mu. m, respectively. The moving distance of polysilicon actuator was experimentally conformed as large as 21 .mu. m at the input voltage level of 10 V and 50Hz square wave. These micro actuator technology can be utilized for the fabrication of MEMS (microlectromechanical system) such as microrelay, which requires large displacement or contact force but relatively slow response.

  • PDF

MicroRNA-203 As a Stemness Inhibitor of Glioblastoma Stem Cells

  • Deng, Yifan;Zhu, Gang;Luo, Honghai;Zhao, Shiguang
    • Molecules and Cells
    • /
    • v.39 no.8
    • /
    • pp.619-624
    • /
    • 2016
  • Glioblastoma stem cells (GBM-SCs) are believed to be a subpopulation within all glioblastoma (GBM) cells that are in large part responsible for tumor growth and the high grade of therapeutic resistance that is so characteristic of GBM. MicroRNAs (miR) have been implicated in regulating the expression of oncogenes and tumor suppressor genes in cancer stem cells, including GBM-SCs, and they are a potential target for cancer therapy. In the current study, miR-203 expression was reduced in $CD133^+$ GBM-SCs derived from six human GBM biopsies. MicroRNA-203 transfected GBM-SCs had reduced capacity for self-renewal in the cell sphere assay and increased expression of glial and neuronal differentiation markers. In addition, a reduced proliferation rate and an increased rate of apoptosis were observed. Therefore, miR-203 has the potential to reduce features of stemness, specifically in GBM-SCs, and is a logical target for GBM gene therapy.

Micro Patterning of Nano Metal Ink for Printed Circuit Board Using Inkjet Printing Technology (잉크젯 프린팅 기술을 이용한 나노 금속잉크의 인쇄회로기판용 미세배선 형성)

  • Park, Sung-Jun;Seo, Shang-Hoon;Joung, Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.89-96
    • /
    • 2007
  • Inkjet printing has become one of the most attractive manufacturing techniques in industry. Especially inkjet printing technology will soon be part of the PCB (Printed Circuit Board) fabrication processes. Traditional printing on PCB includes screen printing and photolithography. These technologies involve high costs, time-consuming procedures and several process steps. However, by inkjet technology manufacturing time and production costs can be reduced, and procedures can be more efficient. PCB manufacturers therefore willingly accept this inkjet technology to the PCB industry, and are quickly shifting from conventional to inkjet printing. To produce the printed circuit board by the inkjet technology, it must be harmonized with conductive nano ink, printing process, system, and inkjet printhead. In this study, micro patterning of conductive line has been investigated using the piezoelectric printhead driven by a bipolar voltage signal is used to dispense 20-40 ${\mu}m$ diameter droplets and silver nano ink which consists of 1 to 50 nm silver particles that are homogeneously suspended in an organic carrier. To fabricate a conductive line used in PCB with high precision, a printed line width was calculated and compared with printing results.

Analysis of Operating Characteristics of 200kW Class Micro Gas Turbine (200kW 급 마이크로 가스터빈의 운전특성 분석)

  • Kim, Jeong Ho;Kang, Do Won;Kim, Tong Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.11
    • /
    • pp.1015-1022
    • /
    • 2013
  • This study simulates the operation of a 200 kW class micro gas turbine that is currently under development. The performance and operating characteristics depending on the load control scheme (constant turbine inlet temperature versus constant turbine exit temperature) and ambient condition were investigated using detailed component performance data. The sensitivities of operating parameters, such as the compressor surge margin and flow path temperatures, according to unit fuel flow change were predicted for a wide load range. The sensitivity analysis showed that the steady state calculation provided useful information about the maximum surge margin reduction during load change.

Study on Performance and Durability of the Proton Exchange Membrane Fuel Cell with Different Micro Porous Layer Penetration Thickness (미세다공층의 침투깊이가 다른 기체확산층이 고분자전해질 연료전지의 성능과 내구성에 미치는 영향에 관한 연구)

  • Cho, Junhyun;Park, Jaeman;Oh, Hwanyeong;Min, Kyoungdoug;Jyoung, Jy-Young;Lee, Eunsook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.81.2-81.2
    • /
    • 2011
  • The gas diffusion layer (GDL) consists of two main parts, the GDL backing layer, called as a substrate and the micro porous layer (MPL) coated on the GDBL. In this process, carbon particles of MPL penetrates to the GDBL consequently forms MPL penetration part. In this study, the micro porous layer (MPL) penetration thickness is determined as a design parameter of the GDL which affect pore size distribution profile through the GDL inducing different mass transfer characteristics. The pore size distribution and water permeability characteristics of the GDL are investigated and the cell performance is evaluated under fully/low humidification conditions. Transient response and voltage instability are also studied. In addition, to determine the effects of MPL penetration on the degradation, the carbon corrosion stress test is conducted. The GDL that have deep MPL penetration thickness shows better performance in high current density region because of enhanced water management, however, loss of penetrated MPL parts is shown after aging and it induces worse water management characteristics.

  • PDF

A Study on the Mirror Grinding for Mold of a Small Aspherical Lens

  • Lee, Joo-Sang;Masaru Saeki;Tsunemoto Kuriyagawa;Katsuo Syoji
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.48-54
    • /
    • 2003
  • This paper deals with mirror grinding of a small-sized aspherical lens by a resin bonded diamond spherical wheel. Up to now, a spherical lens has been used for the lens of the optical communication optical part. However, recently, aspherical optical parts are mainly used in order to attempt the improvement in image quality and miniaturization of the optical device. It is possible to manufacture the aspherical lens which is presently being used in optical instrument through ultra-precision machining technology. Also, to realize compactness, efforts are being made to produce a micro aspherical lens, fur which the development of a high-precision, micro molding die is inevitable. Therefore, extensive research is being done on methods of producing a micro aspherical surface by high-precision grinding. In this paper, the spherical wheel was trued by cup-shaped truer and tool path was calculated by the radius of curvature of the wheel after truing and dressing. Then in the aspherical grinding experiment, WC material which is used as a melding die for the small-sized aspherical lens was ground. The results showed that a form accuracy of 0.1918 $\mu\textrm{m}$ P-V and a surface roughness of 0.064 $\mu\textrm{m}$ Rmax could be achieved.

Optimum Design of the Power Yacht Based on Micro-Genetic Algorithm

  • Park, Joo-Shin;Kim, Yun-Young
    • Journal of Navigation and Port Research
    • /
    • v.33 no.9
    • /
    • pp.635-644
    • /
    • 2009
  • The optimum design of power yacht belongs to the nonlinear constrained optimization problems. The determination of scantlings for the bow structure is a very important issue with in the whole structural design process. The derived design results are obtained by the use of real-coded micro-genetic algorithm including evaluation from Lloyd's Register small craft guideline, so that the nominal limiting stress requirement can be satisfied. In this study, the minimum volume design of bow structure on the power yacht was carried out based on the finite element analysis. The target model for optimum design and local structural analysis is the bow structure of a power yacht. The volume of bow structure and the main dimensions of structural members are chosen as an objective function and design variable, respectively. During optimization procedure, finite element analysis was performed to determine the constraint parameters at each iteration step of the optimization loop. optimization results were compared with a pre-existing design and it was possible to reduce approximately 19 percents of the total steel volume of bow structure from the previous design for the power yacht.

A Study on the Mirror Grinding for Mold of a Small Aspherical Lens (소형 비구면 렌즈 금형의 경면 연삭 가공에 관한 연구)

  • Lee, Joo-Sang;Saeki, Masaru;Kuriyagawa, Tsunemoto;Syoji, Katsuo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.82-87
    • /
    • 2001
  • This paper deals with mirror grinding of a small-sized aspherical lens by the resin bonded diamond spherical wheel. Up to now, a spherical lens has been used for the lens of the optical communication optical part. However, recently, the aspherical optical parts are mainly used in order to attempt the improvement in image quality and miniaturization of the optical device. It is possible to manufacture the aspherical lens which is presently being used in optical instrument through ultra-precision machinery technology. Also, to realize compactability, efforts are being made to produce a micro aspherical lens, for which the development of a high-precision, micro molding die is inevitable. Therefore, extensive research is being done on methods of producing an micro aspherical surface by high-precision grinding. In this paper, the spherical wheel was trued by cup-type truer and tool path was calculated by the radius of curvature of wheel after truing and dressing. And then in the aspherical grinding experiment, WC material which is used as a molding die for the small-sized aspherical lens was ground. It results was that a form accuracy of 0.1918${\mu}m$ P-V and a surface roughness of 0.064${\mu}m$ Rmax.

  • PDF

펜던트형 감성조명 LED 등기구 모듈개발

  • Seo, Dong-Won;Kim, Yeong-Geun;Kim, Jin-Sa;Kim, Geum-Taek;Choe, Un-Sik;Song, Min-Jong;Song, Myeong-Hyeon;Park, Chun-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.264-264
    • /
    • 2009
  • The sensitivity lighting of pendant type used Micro-controller AVR, embodiment method for Munsell chromaticity diagram system and adoption method for light source lens respectively. About a plan design of light fixture, LED circuit designed flow chart of circuits and LED driver of organizations in electron device. For used Solidworks soft ware program, LED light source must take a heat shink part and LED light fixture module for sensitivity lighting of pendant type into considerations

  • PDF

A Study on the Fixation Characteristics of a Self-expansion Type ACL Fixation Device (자가 확장형 전방십자인대 고정장치의 고정 특성에 대한 연구)

  • Kim, Jong-Dae;Kim, Hong-Gun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.321-327
    • /
    • 2009
  • This paper studied the influences of the main design parameter-the expansion angle and the material properties of the self-expansion anterior cruciate ligament fixation device on the contact condition with the bone and the initial stability of the device. Using finite element analysis, the stress distributions of the ring part of the device and the wall of the bone tunnel were calculated. And the micro-migration of the device by the pull-out force was calculated. From the analysis results, it was found that when designing the self-expansion type anterior cruciate ligament fixation device, it is desirable to use the material having higher Young's modulus and to design the fixation device that all wedges uniformly maintain contact with bone to obtain initial stability after operation.

  • PDF