• 제목/요약/키워드: Micro or Nano Machining

검색결과 25건 처리시간 0.028초

FIB 가공 공정 특성 분석 (The analysis of sputtering characteristics using Focused Ion Beam according to Focal Length)

  • 최병열;최우천;강은구;홍원표;이석우;최헌종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1518-1521
    • /
    • 2005
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its usage in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries This paper focus to apply the sputtering technology accumulated by experiments to 3d structure fabrication with high resolution. Therefore some verifications and discussions of the characteristics of FIB sputtering results according to focal length were described in this paper. And we suggested the definition of rectangular pattern profile and made the verifications of sputtering results based on definition of it.

  • PDF

하이브리드 쾌속 조형을 이용한 나노 복합재의 조형 (Fabrication of Nano Composites Using Hybrid Rapid Prototyping)

  • 추원식;김성근;안성훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.757-760
    • /
    • 2005
  • The technology of rapid prototyping (RP) is used for design verification, function test and fabrication of prototype. The current issues in RP are improvement in accuracy and application of various materials. In this paper, a hybrid rapid prototyping system is introduced which can fabricate nano composites using various materials. This hybrid system adopts RP and machining process, so material deposition and removal is performed at the same time in a single station. As examples, micro gears and a composite scaffold were fabricated using photo cured polymer with nano powders such as carbon black and hydroxyapatite. From the micro gear samples the hybrid RP technology showed higher precision than those made by casting or deposition process.

  • PDF

투명유리 내부의 컬러 미세형상 가공 (Micro-machining inside of a transparent glass)

  • 김영미;유병헌;조성학;장원석;김재구;황경현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.209-210
    • /
    • 2006
  • We have successfully termed brown colored patterns inside of a transparent borosilicate glass generally known as BK7, laying the focus of near infrared Ti: sapphire femtosecond laser beam in the bulk BK7 glass. It is important to keep the laser power well below the damage threshold of BK7 in forming the color center. Thanks to the low laser power, there was no laser induced mechanical damage such as cracks or threads in the color formed area. From the absorbance spectrum and its gaussian fitting, we found the band gap of BK7, 4.21eV, and three absorption edges.

  • PDF

FIB를 이용한 DLC소재의 가공공정에 관한 연구 (A Study on the Machining Characteristic of DLC Coated Mold Material Using FIB)

  • 홍원표;최병열;강은구;이석우;최헌종
    • 대한기계학회논문집A
    • /
    • 제33권3호
    • /
    • pp.224-230
    • /
    • 2009
  • FIB has been commonly used as a very powerful tool in the semiconductor industry. It is mainly used for mask repair, device correction, failure analysis and IC error correction, etc. Currently, FIB is not being applied to the fabrication of the micro and nano-structured mold, because of low productivity. And also sputtering rate has been required to fabricate 3D shape. In the paper, we studied the FIB-Sputtering rate according to mold materials. And surface roughness characteristics had been analysed for micro or nano mold fabrication. Si wafer, Glassy Carbon, STAVAX and DLC that have been normally considered as good micro or nano mold materials were used in the study.

프리즘 패턴의 기계적 절삭 가공 (Mechanical Machining of Prism Pattern)

  • 유영은;홍성민;제태진;최두선
    • 소성∙가공
    • /
    • 제15권1호
    • /
    • pp.71-75
    • /
    • 2006
  • In recent, various shapes of pattern in micron or nano scale are adapted in many applications due to their good mechanical or optical properties. Light guide panel (LGP) of the LCD is one of important applications for micro pattern and micro prism shape is one of the typical patterns. The size of the surface patterns in most applications is decreasing to the order of micron or even under micron. On the other hand, the area to be patterned keeps enlarging. These two trends in patterned products require tooling micro patterns on large surface, which has still many technical problems to be solved mainly due to pattern size and the tooling area. In this study, we fabricated prism shape of patterns using diamond cutting tool on some metal core and plastic core like PMMA. Some cutting conditions were investigated including cutting force, cutting depth and speed for different core materials.

프리즘 패턴의 기계적 절삭 가공 (Mechanical Machining of Prism pattern)

  • 유영은;홍성민;제태진;최두선
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 금형가공,미세가공,플라스틱가공 공동 심포지엄
    • /
    • pp.110-113
    • /
    • 2005
  • In recent, various shapes of pattern in micron or nano scale are adapted in many applications due to their good mechanical or optical properties. Light guide panel (LGP) of the LCD is one of important applications for micro pattern and micro prism shape is one of the typical patterns. Many applications have the patterns on their surface and the size of the pattern keep decreasing down to the order of micron or even under micron. On the other hand, the area to be patterned keeps enlarging. These two trends in patterned products require tooling micro patterns on large surface, which has still many technical problems to be solved mainly due to pattern size and the tooling area. In this study, we fabricate prism shape of patterns using diamond cutting tool on some metal core and plastic core like PMMA Some of cutting conditions are investigated including cutting force, cutting depth and speed for different core materials.

  • PDF

초정밀 진동 보조 가공 연구 동향 (Current Trends of Vibration-Assisted Machining in Micro/Nano Scales)

  • 이문구;전용호
    • 한국정밀공학회지
    • /
    • 제29권8호
    • /
    • pp.834-839
    • /
    • 2012
  • Recently, mechanical components with miniaturized size, complex shape and fine surface are on demand from industries such as mobile electronics, medical devices and defense. The size of them is smaller than several millimeters, the shape has micro-holes, curve, or multi-step and the surface is mirror-like. This features are not able to be machined with the conventional machining, therefore electro-discharge machining (EDM), cutting, and laser machining have been applied. If the technologies are assisted by vibration, high aspect ratio and good surface are to be achieved. In this paper, prior and current researches of vibration-assisted machining are reviewed. Machining mechanisms with vibration-assisting are explained, their effects are shown, and vibrating apparatuses are discussed. Especially, comparison between with and without vibration assisting is presented. This review shows the vibration-assisted machining is effectively fabricate the components with small and complicated shape and fine surface finish.

AFM 부착형 초미세 다이아몬드 팁 켄틸레버의 제작 및 응용 (Fabrication of Micro Diamond Tip Cantilever for AFM and its Applications)

  • 박정우;이득우
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.395-400
    • /
    • 2005
  • Nano-scale fabrication of silicon substrate based on the use of atomic force microscopy (AFM) was demonstrated. A specially designed cantilever with diamond tip, allowing the formation of damaged layer on silicon substrate by a simple scratching process, has been applied instead of conventional silicon cantilever for scanning. A thin damaged layer forms in the substrate at the diamond tip-sample junction along scanning path of the tip. The damaged layer withstands against wet chemical etching in aqueous KOH solution. Diamond tip acts as a patterning tool like mask film for lithography process. Hence these sequential processes, called tribo-nanolithography, TNL, can fabricate 2D or 3D micro structures in nanometer range. This study demonstrates the novel fabrication processes of the micro cantilever and diamond tip as a tool for TNL using micro-patterning, wet chemical etching and CVD. The developed TNL tools show outstanding machinability against single crystal silicon wafer. Hence, they are expected to have a possibility for industrial applications as a micro-to-nano machining tool.

  • PDF

AFM 기반 Tribo-Nanolithography 를 위한 초미세 다이아몬드 팁 켄틸레버의 제작 (Fabrication of Micro Diamond Tip Cantilever for AFM-based Tribo-Nanolithography)

  • 박정우;이득우
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.39-46
    • /
    • 2006
  • Nano-scale fabrication of silicon substrate based on the use of atomic force microscopy (AFM) was demonstrated. A specially designed cantilever with diamond tip, allowing the formation of damaged layer on silicon substrate by a simple scratching process, has been applied instead of conventional silicon cantilever for scanning. A thin mask layer forms in the substrate at the diamond tip-sample junction along scanning path of the tip. The mask layer withstands against wet chemical etching in aqueous KOH solution. Diamond tip acts as a patterning tool like mask film for lithography process. Hence these sequential processes, called tribo-nanolithography, TNL, can fabricate 2D or 3D micro structures in nanometer range. This study demonstrates the novel fabrication processes of the micro cantilever and diamond tip as a tool for TNL using micro-patterning, wet chemical etching and CVD. The developed TNL tools show outstanding machinability against single crystal silicon wafer. Hence, they are expected to have a possibility for industrial applications as a micro-to-nano machining tool.

미세 레이저 가공의 표면코팅 후 전해 에칭 (Laser Micro Machining and Electrochemical Etching After Surface Coating)

  • 김태풍;박민수
    • 한국정밀공학회지
    • /
    • 제30권6호
    • /
    • pp.638-643
    • /
    • 2013
  • Laser beam machining (LBM) is fast, contactless and able to machine various materials. So it is used to cut metal, drill holes, weld or pattern the imprinted surface. However, after LBM, there still leave burrs and recast layers around the machined area. In order to remove these unwanted parts, LBM process often uses electrochemical etching (ECE). But, the total thickness of workpiece is reduced because the etching process removes not only burrs and recast layers, but also the entire surface. In this paper, surface coating was performed using enamel after LBM on metal. The recast layer can be selectively removed without decreasing total thickness. Comparing with LBM process only, the surface quality of enamel coating process was better than that. And edge shape was also maintained after ECE.