• 제목/요약/키워드: Micro joining

검색결과 243건 처리시간 0.025초

마찰교반접합의 공정변수가 AA2219-AA2195 이종 알루미늄 접합에 미치는 영향 (Effect of Process Parameters on Friction Stir Welds on AA2219-AA2195 Dissimilar Aluminum Alloys)

  • 노국일;유준태;윤종훈;이호성
    • 한국재료학회지
    • /
    • 제27권6호
    • /
    • pp.331-338
    • /
    • 2017
  • This study was carried out to investigate the optimum condition of a friction stir welding process for a joint of AA2219-T87 and AA2195-T8 dissimilar aluminum alloys. These alloys are known to have good cryogenic properties, and as such to be suitable for use in fuel tanks of space vehicles. The welding parameters include the travelling speed, rotation speed and rotation direction of the tool. The experiment was conducted under conditions in which the travelling speed of the tool was 120-300 mm/min and the rotation speed of the tool was 400-800 rpm. To investigate the effect of the rotation direction of the tool, the joining was performed by switching the positions of the two dissimilar alloys. After welding, the microstructure was observed and the micro-hardness were measured; non-destructive evaluation was carried out to perform tensile tests on defect-free specimens. The result was that the microstructure of the weld joint underwent dynamic recrystallization due to sufficient deformation and frictional heat. The travelling speed of the tool had little effect on the properties of the joint, but the properties of the joint varied with the rotation speed of the tool. The conditions for the best joining properties were 600 rpm and 180-240 mm/min when the AA2219-T8 alloy was on the retreating side(RS).

스테인레스강 Overlay 용접부의 Disbonding에 관한 연구 1

  • 이영호;윤의박
    • Journal of Welding and Joining
    • /
    • 제1권2호
    • /
    • pp.45-52
    • /
    • 1983
  • Many pressure vessels for the hot H$\sub$2//H$\sub$2/S service are made of 2+1/4Cr-1Mo steel with austenitic stainless steel overlay to combat agressive corrosion due to hydrogen sulfide. Hydrogen dissolves in to materials during operation, and sometimes gives rise to unfore-seeable damages. Appropriate precautions must, therefore, be taken to avoid the hydrogen induced damages in the design, fabrication and operation stage of such reactor vessels. Recently, hydrogeninduced cracking (or Disbonding) was found at the interface between base metal and stainless weld overlay of a desulfurizing reactor. Since the stainless steel overlay weld metal is subjected to thermal and internal-pressure loads in reactor operation, it is desirable for the overlay weld metal to have high strength and ductility from the stand point of structural safety. In section III of ASME Boiler and Pressure Vessel Code, Post-Weld Heat Treatment(PWHT) of more than one hour per inch at over 1100.deg. F(593.deg. C) is required for the weld joints of low alloy pressure vessel steels. This heat treatment to relieve stresses in the welded joint during construction of the pressure vessel is considered to cause sensitization of the overlay weld metal. The present study was carried out to make clear the diffusion of carbon migration by PWHT in dissimilar metal welded joint. The main conclusion reached from this study are as follows: 1) The theoretical analysis for diffusion of carbon in stainless steel overlay weld metal does not agree with Fick's 2nd law but the general law of molecular diffusion phenomenon by thermodynamic chemical potential. 2) In the stainless steel overlay welded joint, the PWHT at 720.deg. C for 10 hours causes a diffusion of carbon atoms from ferritic steel into austenitic steel according to the theoretical analysis for carbon migration and its experiment. 3) In case of PWHT at 720.deg. C for 10 hours, the micro-hardness of stainless steel weld metal in bonded zone increase very highly in the carburized layer with remarkable hardening than that of weld metal.

  • PDF

Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구 (Mechanism of Crack Formation in Pulse Nd:YAG Laser Spot Welding of Al Alloys)

  • 하용수;조창현;강정윤;김종도;박화순
    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.86-94
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7N01 spot-welded by pulse Nd : YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed : center line crack({TEX}$C_{C}${/TEX}), diagonal crack({TEX}$C_{D}${/TEX}), and U shape crack({TEX}$C_{U}${/TEX}). Also, HAZ crack({TEX}$C_{H}${/TEX}) was observed in the HAZ region, furthermore, mixing crack({TEX}$C_{M}${/TEX}) consisting of diagonal crack and HAZ crack was observed. White film was formed at th hot crack region in the fractured surface after it was immersed to 10% NaOH water. In the case of A5083 alloy, white films in {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack region were composed of low melting phases, {TEX}$Fe_{2}SiAl_{8}${/TEX} and eutectic phases, $Mg_2$Al$_3$ and $Mg_2$Si. Such films observed $CuAl_2$, {TEX}$Mg_{32}(Al,Zn)_{3}${/TEX}, MgZn$_2$, $Al_2$CuMg and $Mg_2$Si were observed in the whitely etched films near {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Sim in the case of A7N01 alloy, respectively. The {TEX}$C_{C}${/TEX} and {TEX}$C_{D}${/TEX} cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of {TEX}$C_{M}${/TEX} crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The {TEX}$C_{U}${/TEX} crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification.

  • PDF

A5052-H112 합금의 겹치기 마찰교반접합 조직 특성 (Microstructures of Friction Stir Lap Weld in A5052-H112 Alloy)

  • 고영봉;이중헌;박경채
    • Journal of Welding and Joining
    • /
    • 제27권6호
    • /
    • pp.17-24
    • /
    • 2009
  • The Friction Stir Welding(FSW) has mainly been used for making butt joints in Al alloys. Development of Friction Stir Lap Welding(FSLW) would expand the number of applications. Microstructure of FSLW in A5052-H112 alloy was investigated under varying rotation and welding speed. As the rotation speed was increased and the welding speed was decreased, a amount of heat was increased. As a result, bead interval was narrower, bead width are larger, and experimental bead interval was almost similar to theoretical bead interval. Typical microstructures of FSLW A5052-H112 alloy consist of three zones, including Stir Zone(SZ), Thermo-Mechanically Affected Zone(TMAZ) and Heat Affected Zone(HAZ). As a amount of heat was increased, average grain size was larger in three zones. Nevertheless, the aspect ratio was almost fixed for FSLW conditions. The misorientation of SZ, HAZ and TMAZ was examined. A large number of low angle grain boundaries, which were formed by severe plastic deformation, were showed in TMAZ as comparison with SZ and HAZ. Microhardness distribution was high in order of BM, SZ, TMAZ, and HAZ. The Micro-hardness distribution in HAZ, TMAZ of upper plate were lager than lower plate. Relationship between average grain size and microhardness was almost corresponded to Hall-Petch equation.

액체로켓 연소기용 Inconel 718 주조 및 단조 합금의 전자빔 용접부 미세조직 및 극저온 특성 (A Study on Microstructures and Cryogenic Mechanical Properties of Electron Beam Welds between Cast and Forged Inconel 718 Superalloys for Liquid Rocket Combustion Head)

  • 홍현욱;배상현;권순일;이재현;도정현;최백규;김인수;조창용
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.50-57
    • /
    • 2013
  • Characterization of microstructures and cryogenic mechanical properties of electro beam (EB) welds between cast and forged Inconel 718 superalloys has been investigated. Optimal EBW condition was found in the beam current range of 36~39 mA with the constant travel speed of 12 mm/s and arc voltage of 120 kV for 10 mm-thick specimens. Electron beam current lower than 25 mA caused to occur the liquation microfissuring in cast-side heat affected zone (HAZ) of EB welds. The HAZ liquation microfissure was found on the liquated grain boundaries with resolidified ${\gamma}/Laves$ and ${\gamma}/NbC$ eutectic constituents. EBW produced welds showing a fine dendritic structure with relatively discrete Laves phase due to fast cooling rate. After post weld aging treatment, blocky Laves phase and formation of ${\gamma}^{\prime}+{\gamma}^{{\prime}{\prime}}$ strengtheners were observed. Presence of primary strengthener and coarse Laves particles in PWHT weld may cause to reduce micro-plastic zone ahead of a crack, leading to a significant decrease in Charpy impact toughness at $-196^{\circ}C$. Fracture initiation and propagation induced by Charpy impact testing were discussed in terms of the dislocation structures ahead of crack arisen from the fractured Laves phase.

Solderable 이방성 도전성 접착제를 이용한 마이크로 접합 프로세스 (Micro Joining Process Using Solderable Anisotropic Conductive Adhesive)

  • 임병승;전성호;송용;김연희;김주헌;김종민
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.73-73
    • /
    • 2009
  • In this sutdy, a new class ACA(Anisotropic Conductive Adhesive) with low-melting-point alloy(LMPA) and self-organized interconnection method were developed. This developed self-organized interconnection method are achieved by the flow, melting, coalescence and wetting characteristics of the LMPA fillers in ACA. In order to observe self-interconnection characteristic, the QFP($14{\times}14{\times}2.7mm$ size and 1mm lead pitch) was used. Thermal characteristic of the ACA and temperature-dependant viscosity characteristics of the polymer were observed by differential scanning calorimetry(DSC) and torsional parallel rheometer, respectively. A electrical and mechanical characteristics of QFP bonding were measured using multimeter and pull tester, respectively. Wetting and coalescence characteristics of LMPA filler particles and morphology of conduction path were observed by microfocus X-ray inspection systems and cross-sectional optical microscope. As a result, the developed self-organized interconnection method has a good electrical characteristic($2.41m{\Omega}$) and bonding strength(17.19N) by metallurgical interconnection of molten solder particles in ACA.

  • PDF

Au 스터드 범프 본딩과 Ag 페이스트 본딩으로 연결된 소자의 온도 측정 및 접촉 저항에 관한 연구 (Temperature Measurement and Contact Resistance of Au Stud Bump Bonding and Ag Paste Bonding with Thermal Heater Device)

  • 김득한;유세훈;이창우;이택영
    • 마이크로전자및패키징학회지
    • /
    • 제17권2호
    • /
    • pp.55-61
    • /
    • 2010
  • 탄탈륨실리사이드 히터가 내장된 소자를 Ag 페이스트와 Au SBB(Stud Bump Bonding)를 이용하여 Au가 코팅 된 기판에 각각 접합 하였다. 전단 테스트와 전류를 흐르면서 열 성능을 측정하였다. Au 스터드 범프 본딩의 최적 플립칩 접합조건은 전단 후 파괴면 관찰하여 설정하였으며, 기판 온도를 $350^{\circ}C$, 소자 온도를 $250^{\circ}C$에서 하중을 300 g/bump 로 하여 접합하는 경우가 최적 조건이였다. 히터에 5 W 인가시 소자의 온도는 Ag 페이스트를 이용한 접합의 경우 최대 온도는 약 $50^{\circ}C$이었으며, Au 금속층을 갖고 있는 실리콘 기판에 Au 스터드 본딩으로 접합된 인 경우 약 $64^{\circ}C$를 나타내었다. 기판과의 접촉면적이 와이어본딩과 Au 스터드 범프 본딩 가 약 300배가 차이가 나는 경우 약 $14^{\circ}C$ 차이를 나타내었고, 전사모사를 통하여 접합면의 접촉저항이 중요한 이유임을 알 수 있었다.

Cu/Sn-3.5Ag 미세범프 구조에 따른 실시간 금속간화합물 성장거동 분석 (Effect of Solder Structure on the In-situ Intermetallic Compounds growth Characteristics of Cu/Sn-3.5Ag Microbump)

  • 이병록;박종명;고영기;이창우;박영배
    • 마이크로전자및패키징학회지
    • /
    • 제20권3호
    • /
    • pp.45-51
    • /
    • 2013
  • 3차원 적층 패키지를 위한 Cu/Sn-3.5Ag 미세범프의 솔더 구조에 따른 금속간화합물 성장거동을 분석하기 위해 솔더 두께가 각각 $6{\mu}m$, $4{\mu}m$인 서로 다른 구조의 미세범프를 $130^{\circ}C$, $150^{\circ}C$, $170^{\circ}C$ 조건에서 실시간 주사전자현미경을 이용하여 실시간 금속간화합물 성장 거동을 분석하였다. Cu/Sn-3.5Ag($6{\mu}m$) 미세범프의 경우, 많은 양의 솔더로 인해 접합 직후 솔더가 넓게 퍼진 형상을 나타내었고, 열처리 시간경과에 따라 $Cu_6Sn_5$$Cu_3Sn$금속간화합물이 성장한 후, 잔류 Sn 소모 시점 이후 $Cu_6Sn_5$$Cu_3Sn$으로 상전이 되는 구간이 존재하였다. 반면, Cu/Sn-3.5Ag($4{\mu}m$) 미세범프의 경우, 적은양의 솔더로 인해 접합 직후 솔더의 퍼짐 현상이 억제 되었고, 접합 직후 잔류 Sn상이 존재하지 않아서 금속간화합물 성장구간이 억제되고, 열처리 시간경과에 따라 $Cu_6Sn_5$$Cu_3Sn$으로 상전이 되는 구간만 존재하였다. 두 시편의 $Cu_3Sn$상의 활성화 에너지의 값은 Cu/Sn-3.5Ag($6{\mu}m$) 및 Cu/Sn-3.5Ag($4{\mu}m$) 미세범프가 각각 0.80eV, 0.71eV로 나타났고, 이러한 차이는 반응기구 구간의 차이에 따른 것으로 판단된다. 따라서, 솔더의 측면 퍼짐 보다는 접합 두께가 미세범프의 금속간화합물 반응 기구를 지배하는 것으로 판단된다.

Weldability of Type 444 Ferritic Stainless Steel GTA Welds

  • Li, C.;Jeong, H.S.
    • International Journal of Korean Welding Society
    • /
    • 제3권1호
    • /
    • pp.29-33
    • /
    • 2003
  • The ferritic stainless steels are generally considered to have poor weldability compared with that of the austenitic stainless steels. However the primary advantages of ferritic stainless steels include lower material cost than the more commonly used austenitic stainless steels and a greater resistance to stress corrosion cracking. Thus, the weldability of ferritic stainless steels was investigated in this study. In concerning the weldability, Grain size measurement test, Erichsen test and Varestraint test were involved. full penetration welds were produced by autogeneous direct current straight polarity (DCSP) and pulsed currents gas tungsten arc welding (GIAW) and the effect of pulsed currents welding on the welds was compared to that of DCSP welding. The results showed that pulsed current was effective to refine grain size in the weld metal and the finest grain size was obtained at the frequency of 150Hz. In addition, the ductility of welds was lower than that of base metal. Finally, autogeneous type 444 welds were less susceptible to macro solidification cracks, but more sensitive to micro cracks; SEM/EDS analysis indicated that all the inclusions in the crack showed enrichment of Mn, Si, O and S.

  • PDF

DISSIMILAR FRICTION-STIR WELDING OF ALALLOY 1050 AND MGALLOY AZ31

  • Park, Seung Hwan C.;Masato Michiuchi;Yutaka S. Sato;Hiroyuki Kokawa
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.534-538
    • /
    • 2002
  • Dissimilar friction stir welding of aluminum (AI) alloy 1050 and magnesium (Mg) alloy AZ31 was successfully done in the limited welding parameters. The dissimilar weld showed good quality and facility compared to conventional fusion weld. Transverse cross section perpendicular to the welding direction had no defects. The weld was divided into base material of Al alloy, an irregular shaped stir zone and base material of Mg alloy. The irregular shaped stir zone was roughly located around the initial weld center. The weld interface near plate surface shifted from initial weld centerline to the advancing side. Hardness profile of the weld was heterogeneous, and the hardness value of the stir zone was raised to about 150 Hv to 250 Hv. The mixed phase was identified to intermetallic compound $Mg_{17}$Al$_{12}$ using x-ray diffraction method, energy dispersive x-ray spectroscopy (EDX) and electron probe micro analysis (EPMA). The formation of intermetallic compound $Mg_{17}$Al$_{12}$ during FSW causes the remarkable increase in hardness value in the stir zone.one.

  • PDF