• 제목/요약/키워드: Micro grooving

검색결과 59건 처리시간 0.035초

타원궤적 진동절삭 가공기를 이용한 미세 형상 가공 (Machining of Micro Structure using Elliptical Vibration Grooving Machine)

  • 김기대;노병국
    • 한국정밀공학회지
    • /
    • 제25권11호
    • /
    • pp.45-51
    • /
    • 2008
  • Successive micro-scale V-grooves and a grid of pyramids were machined by elliptical vibration tufting (EVC) to investigate feasibility of using EVC as an alternative method of creating micro-molds to photo-lithography and electroforming, which have been commonly employed. An elliptical vibration grooving machine was developed which consists of two orthogonally-arranged piezoelectric actuators, a diamond cutting tool, and a motorized xyz stage. The micro-scale features were machined on materials of copper, duralumin, nickel, and hastelloy and it was found that EVC significantly reduces cutting resistance and prohibits generation of side burrs and rollover burrs, thus resulting in improving machining qualify of micro-molds in ail experimented workpiece materials.

C-means 알고리즘을 이용한 마이크로 엔드밀의 상태 감시 (Condition Monitoring of Micro Endmill using C-means Algorithm)

  • 권동희;정연식;강익수;김전하;김정석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.162-167
    • /
    • 2005
  • Recently, the advanced industries using micro parts are rapidly growing. Micro endmilling is one of the prominent technology that has wide spectrum of application field ranging from macro to micro parts. Also, the method of micro-grooving using micro endmilling is used widely owing to many merit, but has problems of precision and quality of products due to tool wear and tool fracture. This study deals with condition monitoring using acoustic emission(AE) signal in the micro-grooving. First, the feature extraction of AE signal directly related to machining process is executed. Then, the distinctive micro endmill state according to the each tool condition is classified by using the fuzzy C-means algorithm, which is one of the methods to recognize data patterns. These result is effective monitoring method of micro endmill state by the AE sensing techniques which can be expected to be applicable to micro machining processes in the future.

  • PDF

마이크로 엔드밀링에서 AE 신호를 이용한 공구상태 감시 (Tool Condition Monitoring using AE Signal in Micro Endmilling)

  • 강익수;정연식;권동희;김전하;김정석;안중환
    • 한국정밀공학회지
    • /
    • 제23권1호
    • /
    • pp.64-71
    • /
    • 2006
  • Ultraprecision machining and MEMS technology have been taken more and more important position in machining of microparts. Micro endmilling is one of the prominent technology that has wide spectrum of application field ranging from macro parts to micro products. Also, the method of micro-grooving using micro endmill is used widely owing to many merit, but has problems of precision and quality of products due to tool wear and tool fracture. This investigation deals with state monitoring using acoustic emission(AE) signal in the micro-grooving. Characteristic evaluation of AE raw signal, AE hit and frequency analysis for condition monitoring is presented. Also, the feature extraction of AE signal directly related to machining process is executed. Then, the distinctive micro endmill state according to the each tool condition is classified by the fuzzy C-means algorithm.

A Study on Critical Depth of Cuts in Micro Grooving

  • Son, Seong-Min;Lim, Han-Seok;Paik, In-Hwan;Ahn, Jung-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제17권2호
    • /
    • pp.239-245
    • /
    • 2003
  • Ultra precision diamond cutting is a very efficient manufacturing method for optical parts such as HOE, Fresnel lenses, diffraction lenses, and others. During micro cutting, the rake angle is likely to become negative because the tool edge radius is considerably large compared to the sub-micrometer-order depth of cut. Depending on the ratio of the tool edge radius to the depth of cut, different micro-cutting mechanism modes appear. Therefore, the tool edge sharpness is the most important factor which affects the qualities of machined parts. That is why diamond, especially monocrystal diamond which has the sharpest edge among all other materials, is widely used in micro-cutting. The majar issue is regarding the minimum (critical) depth of cut needed to obtain continuous chips during the cutting process. In this paper, the micro machinability near the critical depth of cut is investigated in micro grooving with a diamond tool. The experimental results show the characteristics of micro-cutting in terms of cutting force ratio (Fx/Fy), chip shape, surface roughness, and surface hardening nea. the critical depth of cut.