• Title/Summary/Keyword: Micro generator

Search Result 244, Processing Time 0.022 seconds

Development of A High Voltage Generator for EP Adopting the Micro-Pulse Concept (Micro-Pulse 하전식 집진기용 초고압 전원장치 개발)

  • Kim, W.H.;Kang, I.;Kim, J.S.;Rim, G.H.;Kim, J.W.;Cho, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2130-2132
    • /
    • 1998
  • With the increasing demands for clean environment, development of air cleaning systems has been received increasing attention. EP is usually used for air cleaning in the coal power plant. One of the key technology in the EP is high voltage pulse power supply, which affects the performance of the overall system. In this study, high voltage micro pulse power supply for the EP is developed for a 500MW coal power plant. The power supply has a dc source and a pulse one. The ratings of the dc and pulse source are 60kV, 800mA and 70kV, 400mA respectively.

  • PDF

Spray Visualization of the Gas Turbine Vaporizer (가스터빈 기화기의 분무 가시화 연구)

  • Jo, Sungpil;Joo, Milee;Choi, Seongman;Rhee, Dongho
    • Journal of ILASS-Korea
    • /
    • v.24 no.3
    • /
    • pp.130-136
    • /
    • 2019
  • Spray visualization of a vaporizer fuel injection system of a micro turbo jet engine was experimentally studied. The fuel heating by combustion was simulated by the high pressure steam generator and combustor inlet air from the centrifugal compressor was simulated by compressed air stored in the high pressure air tank. Spray visualization was performed with single vaporizer, and then six vaporizers which are same number of micro turbojet engine were used. As a results, the spray characteristics of the vaporizer were understood with pressure difference of the combustor inlet air and the fuel supply pressure. Spray angles with three types of vaporizer configuration were measured. In the results, guide vane configuration has a wider spray angle than the straight tube and smooth curve tube with a swirler, so it is expected that the fuel will be effectively distributed inside the combustor flame tube.

Small Energy Generator Using Multilayer Piezoelectric Devices (적층형 압전 소자를 이용한 미소 에너지발생장치)

  • Jeong, Soon-Jong;Kim, Min-Soo;Kim, In-Sung;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.261-261
    • /
    • 2007
  • Wearable and ubiquitous micro systems will be greatly growing and their related devices should be self-powered in order to avoid the replacement of finite power sources, for example, by scavenging energy from the environment. With ever reducing power requirements of both analog and digital circuits, power scavenging approaches are becoming increasingly realistic. One approach is to drive an electromechanical converter from ambient motion or vibration. Vibration-driven generators based on electromagnetic, electrostatic and piezoelectric technologies have been demonstrated. Among various generator types proposed so far, piezoelectric generator possesses considerable potential in micro system. To overcome low mechanical-to- electric energy conversion, the piezoelectric device should activate in resonance mode in response to external vibration. Normally, the external vibration excretes at low frequency ranging 0.1 to 200 Hz, whereas the resonant frequencies of the devices are fixed as constant. Therefore, keeping their resonant mode in varying external vibration can be one of important points in enhancing the conversion efficiency. We investigated the possibility of use of multi-bender type piezoelectric devices. To match the external vibration frequency with the device resonant frequency, the various devices with different resonant frequency were chosen. Under an external vibration acceleration of 0.1G at 120 Hz, the device exhibited a peak-to-peak voltage of 2.8 V and a power of 0.5 mw in resonance mode.

  • PDF

Numerical Simulation of the Mixing and Flow Characteristics in a Micro Cyclone Combustor (마이크로 사이클론 연소기의 혼합 및 유동특성에 관한 수치해석 연구)

  • Oh, Chang-Bo;Choi, Byung-il;Han, Yong-shik;Kim, Myung-bae;Hwang, Cheol-hong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1900-1905
    • /
    • 2007
  • A micro cyclone combustor was developed to be used as a heat source of thermoelectric power generator (TPG). The cyclone combustor was designed so that fuel and air were supplied to the combustion chamber separately. The mixing and flow characteristics in the combustor were investigated numerically. The global equivalence ratio (${\Phi}$), defined using the fuel and air flow rates, was introduced to examine the flow features of the combustor. The mixing of fuel and air inside the combustor could be well understood using the fuel concentration distribution. It was found that the weak recirculating zone was formed upper the fuel-supplying tube in case of ${\Phi}$ < 1.0. In addition, it was found that small regions that have a negative axial velocity exist near the fuel injection ports. It is assumed that these negative axial velocity regions can stabilize a flame inside the micro cyclone combustor.

  • PDF

Micro-Vibration Measurement, Analysis and Attenuation Techniques of Reaction Wheel Assembly in Satellite (인공위성 반작용휠의 미소진동 측정, 해석 및 저감 기술)

  • Oh, Shi-Hwan;Rhee, Seung-Wu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.126-132
    • /
    • 2002
  • Jitter induced from several payloads on-board satellites degrade the performance of pointing accuracy and attenuate the resolving power of highly-precise camera image such as KOMPSAT II. In this paper, we introduce a micro-vibration measurement technique, analysis of dynamic characteristics, and modeling method for a reaction wheel assembly which is one of the major sources of jitter in satellites and an effective vibration reduction techniques are considered. Based on these techniques, vibration measurement and passive control were performed with an micro-vibration generator which was designed to have similar dynamic performances with an actual reaction wheel assembly above 50Hz.

Flame Stability and NOx Formation by Micro scale Turbulence (마이크로 스케일 난류에 의한 화염안정성 및 NOx 생성)

  • Kim, I.S.;Seo, J.M.;Lee, G.S.;Lee, C.W.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.57-62
    • /
    • 2001
  • The effect of micro scale turbulence on flame structure and stability were experimentally investigated by changing the area of micro turbulence generator(MTG) and air velocity in terms of low NOx and high efficiency combustion. NOx and CO concentration were also measured for different MTG areas to investigate whether a vane swirler having MTG has a possibility of using as part for low NOx combustor. From the obtained results, it is shown that flame stability region increases and flame size becomes small as MTG area increases since MTG in itself makes small scale recirculation flow and swirler does large scale recirculation one. It is also shown that low NOx concentration(about 20${\sim}$30ppm@$O_2$ 11%) is achieved for all MTG areas without any increase in CO concentration regardless of air velocity range tested in this study when the equivalence ratio is 0.7. The results obtained in this study can give basic guideline for the design of compact low NOx high efficiency combustor using a vane swirler having MTG.

  • PDF

Numerical Simulation of the Mixing and Flow Characteristics in a Micro Cyclone Combustor (마이크로 사이클론 연소기의 혼합 및 유동특성에 관한 수치해석 연구)

  • Choi, Byung-ll;Han, Yong-Shik;Kim, Myung-Bae;Hwang, Cheol-Hong;Oh, Chang-Bo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.1042-1047
    • /
    • 2007
  • A micro cyclone combustor was developed to be used as a heat source of thermoelectric power generator (TPG). The cyclone combustor was designed so that fuel and air were supplied to the combustion chamber separately. The mixing and flow characteristics in the combustor were investigated numerically. The global equivalence ratio ($\Phi$), defined using the fuel and air flow rates, was introduced to examine the flow features of the combustor. The mixing of fuel and air inside the combustor could be well understood using the fuel concentration distribution. It was found that the weak recirculating zone was formed upper the fuel-supplying tube in case of ${\Phi}$<1.0. In addition, it was found that small regions that have a negative axial velocity exist near the fuel injection ports. It is assumed that these negative axial velocity regions can stabilize a flame inside the micro cyclone combustor.

The Application and Verification of the 2MVA Battery Energy Storage System(BESS) with Wind-turbine in Micro-grid of Gapado, Jeju (가파도 마이크로그리드에서의 풍력발전 연계를 위한 2MVA급 배터리 에너지 저장시스템(BESS) 적용 및 실증)

  • Kim, Seung-Mo;Oh, Seung-Jin;Lee, Jong-Hak;Kim, Tae-Hyeong;Kwon, Byung-Ki;Ahn, Jae-Min;Jin, Kyung-Min;Choi, Chang-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.303-311
    • /
    • 2014
  • This paper shows the test result of 2MVA BESS(Battery Energy Storage System) with wind-turbine in micro-grid of the Gapado. To implement of micro-grid with BESS, characteristics of generator and customer load in grid are considered. Also, to operate of 2-parallel PCU(Power Conversion Unit) in BESS, the droop control is adopted with operating mode of grid independent. Performances of BESS with wind-turbine were verified by analysis of power quality such as voltage harmonics, ratio of voltage and frequency regulation, and by measurement of waveform such as output voltage and current.

Effect of hematocrit on hemorheological characteristics of blood flow in a microtube (헤마토크릿에 따른 혈액의 유변학적 특성 변화)

  • Ji, Ho-Seong;Lee, Jung-Yeop;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.111-112
    • /
    • 2006
  • In order to investigate flow characteristics of blood flow in a micro tube ($100{\mu}m$ in diameter) according to hematocrit, in-vitro experiments were carried out using a micro-PIV technique. The micro-PIV system consists of a microscope, a 2 head Nd:YAG laser, a 12 bit cooled CCD camera and a delay generator. Blood was supplied into the micro tube using a syringe pump. Hematocrit of blood was controlled to be 20%, 30% and 40%. The blood flow has a cell free layer near the tube wall and its thickness was changed with increasing the flow rate and hematocrit. The hemorheological characteristics such as shear rate and viscosity were evaluated using the velocity field data measured. As the flow rate increased, the blunt velocity profile in the tube center was sharpened. The viscosity of blood was rapidly increased with decreasing shear rate, especially in the region of low shear rate, changing RBC rheological properties. The variation of velocity profile and blood viscosity shows typical characteristics of Non-Newtonian fluids. On the basis of inflection points, the cell free layer and two-phase flow consisting of plasma and suspensions including RBCs were clearly discriminated.

  • PDF

Economic Evaluation Algorithm of Island Micro-grid for Utility and Independent Power Producer (전력회사와 발전사업자 측면에서 도서지역용 마이크로그리드의 경제성평가 알고리즘)

  • Nam, Yang-Hyum;Lee, Hoo-Dong;Kim, Yu-Rim;Marito, Ferrira;Kim, Mi-Young;Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1032-1038
    • /
    • 2017
  • Recently, regulation on carbon emissions has been strengthened according to the new climate change convention (COP21) held in Paris, and then Korea has decided to reduce CO2 emissions by 37% until 2030. As one of countermeasures, the government has energetically performed demonstration projects of island micro-grid including solar power, wind power and energy storage system. However, in order to smoothly introduce island micro-grid, it is a critical issue to carry out the economic evaluation for power utility aspect and independent power producer aspect. Therefore, this paper proposes economic evaluation algorithms of island micro-grid which are based on the present worth method, considering cost and benefit factors in the aspect of both sides. Firstly, in case of power utility this paper proposes algorithm to estimate a period of return on investment according to the introduction capacity of distributed generators replacing diesel generator. And also, in case of independent power producer, this paper proposes evaluation algorithm to estimate weighting factor of SMP and benefit rate based on break-even point related with cost and benefit. From a case study result on real island micro-grid model, it is confirmed that proposed algorithms are useful and practical for the economic evaluation of island micro-grid.