• Title/Summary/Keyword: Micro force measurement

Search Result 92, Processing Time 0.035 seconds

Development of a Measurement System for the Surface Shape of Micro-parts by Using Atomic Force Microscope (원자간력 현미경을 이용한 초소형 마이크로 부품 표면 형상 측정 시스템 개발)

  • Hong Seong-Wook;Ko Myung-Jun;Shin Young-Hyun;Lee Deug-Woo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.22-30
    • /
    • 2005
  • This paper proposes a measurement method for the surface shape of micro-parts by using an atomic force microscope(AFM). To this end, two techniques are presented: First, the measurement range is expanded by using an image matching method based on correlation coefficients. To account for the inaccuracy of the coarse stage implemented in AFM, the image matching technique is applied to two neighboring images intentionally overlapped with each other. Second, a method to measure the shape of relatively large specimen is proposed that utilizes the inherent trigger mechanism due to the atomic force. The proposed methods are proved effective through a series of experiments.

Development of a measurement system for the surface of micro-parts (초소형 마이크로 부품 표면 측정 시스템 개발)

  • Hong Seong-Wook;Ko Myung-Jun;Shin Young-Hyun;Lee Deug-Woo
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.413-418
    • /
    • 2005
  • This paper proposes a measurement method for the surface of micro-parts by using AFM(Atomic Force Microscope). To this end, two techniques are presented to extend the capacity of AFM. First, the measurement range is extended by using an image matching method based on correlation coefficients. To account for the inaccuracy of the coarse stage implemented in AFM's, the image matching technique is applied to two neighboring images intentionally overlapped with each other. Second, a method to measure the shape of relatively large specimen is presented by using the inherent trigger mechanism due to the atomic force. The proposed method is proved effective through a series of experiments.

  • PDF

Design and Contact Force Control of a Flip Chip Mounting Head system

  • Kim, Kyoung-Jun;Shim, Jae-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1060-1065
    • /
    • 2003
  • This paper contributes to development of a new chip mounting head system for flip chip. Recently, the LDM(Linear DC Motor) has been widely used, because it has particular merits than the rotary type motors. In this paper, we proposed a macro/micro positioning system for force control of a chip mounting system. In the proposed macro/micro system, the macro actuator provide the system with a gross motion while the micro device yields fine tuned motion to reduce the harmful impact force that occurs between very small sized electronic parts and PCB surface. In order to prove the effectiveness of the proposed macro/micro chip mounting system, we compared the proposed chip mounting head with the conventional chip mounting head equipped with a macro actuator only. A series of experiments were executed under the mounting conditions of various access velocities and PCB stiffness. As a result of this study, a satisfactory voice coil actuator as the micro actuator has been developed, and its performance meet well the specifications desired for the design of the chip mounting head system and show good correspondence between theoretical analysis and experimental results.

  • PDF

Development of Measurement System for Quantitative Measurement of Cantilever in Atomic Force Microscopy (원자간격 현미경의 캔틸레버의 정량적 특성평가를 위한 계측 시스템 개발)

  • Kweon, Hyun-Kyu;Nam, Ki-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.2
    • /
    • pp.22-27
    • /
    • 2007
  • In this study, the two methods of stiffness measurement(Spring constant) of cantilever were proposed for quantitative measurement in Atomic Force Microscopy(AFM). As the 1st method for the measurement of stiffness, the probe method, which is used in the measurement of the semiconductor mechanical and electrical properties, was applied to the measurement of the cantilever. Experiments by the probe method were performed finding the resistance value of cantilever. As the results, the resistance was measured differently along with the dimension and the thickness of cantilever that determined the stiffness(spring constant) of the lever. As the 2nd method, the vibration characteristics(Dunkerley expression) is used to obtain the stiffness of the complex structure which is combined by AFM cantilever and the standard cantilever. We measured the resonant frequency from the complex structure using the micro stages and stereo microscope. As the results, we confirmed that the vibration characteristics(Dunkerley expression) is effected the micro complex structure of AFM cantilever.

  • PDF

Mechanism Design of the Micro Weighing Device by Using Null Balance Method (영위법을 이용한 미소중량 측정 장치의 기구설계)

  • Choi, In-Mook;Woo, Sam-Yong;Kim, Boo-Shik;Kim, Soo-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.183-193
    • /
    • 2003
  • Micro-weighing device by using null balance method is being essential part in fields of high-technology industries such as precision semiconductor industry, precision chemistry, biotechnology and genetics etc. Also, requirements for high resolution and for large measurement range increase more and more. The performance of the micro-weighing device can be determined by the mechanism design and analysis. The analytical design method has been proposed for the performance improvement such as resolution, measurement range and fast response. The 2-stage displacement amplification is designed to overcome the limit of conventional force transmitting lever. The parallel spring is designed for the measurement result independent of the input force position variation. Also, the natural frequency of mechanism is analyzed for the fast response. After each analysis, optimal design has been carried out. To verify the analysis and design result, characteristics experiments had been carried out after construction. Finally, the system had been controlled.

A large surface-shape measurement method by using Atomic Force Microscope (원자간력 현미경을 이용한 대면적 표면 형상 측정 방법)

  • Shin Y.H.;Ko M.J.;Hong S.W.;Kwon H.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1543-1546
    • /
    • 2005
  • This paper presents a method to measure a large surface shape using atomic force microscopy, which has been used mostly for measuring over very tiny surfaces. Experiments are performed to measure a step height and a slope of a test sample. The proposed method is rigorously compared with the coordinate measuring machine. The repetition accuracy and the effects of the set point are also studied. The experimental results show that the proposed method is reliable and should be effective to measure both the nano-accuracy surface profile as well as the micro-accuracy global shape of a macro/micro parts using atomic force microscope.

  • PDF

Development of electro-spray micro-thruster and measurement of nano-scale thrust (Electro-spray 마이크로 추진 장치 개발 및 나노 크기의 힘 측정)

  • Lee Young-Jong;Si Bui Quang Tran;Byun Do-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.45-48
    • /
    • 2007
  • Conventional force sensors such as piezoelectric sensor has limitations for measuring micro/nano-scale thrust. In this study we developed nano-scale measurement system using laser displacement sensor and cantilever. And electrospray microthruster was fabricated by using stainless capillary and extraction electrode, to generate nano-scale thrust. The measurement system can measure the around 90 nN thrust from this thruster. In addition, we designed and fabricated electrospray micro thruster based on PMMA(Polymethyl methacrylate), which has a nozzle protruded from the substrate.

  • PDF

The Levitation Mass Method: A Precision Mass and Force Measurement Technique

  • Fujii, Yusaku
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.46-50
    • /
    • 2008
  • The present status and future prospects of the levitation mass method (LMM), a technique for precision mass and force measurement, are reviewed. In the LMM, the inertial force of a mass levitated using a pneumatic linear bearing is used as the reference force applied to the objects being tested, such as force transducers, materials, or structures. The inertial force of the levitated mass is measured using an optical interferometer. We have modified this technique for dynamic force calibration of impact, oscillation, and step loads. We have also applied the LMM to material testing, providing methods for evaluating material viscoelasticity under an oscillating or impact load, evaluating material friction, evaluating the biomechanics of a human hand, and generating and measuring micro-Newton-level forces.

Profile Measurements of Micro-aspheric Surfaces Using an Air-bearing Stylus with a Microprobe

  • Shibuya, Atsushi;Gao, Wei;Yoshikawa, Yasuo;Ju, Bing-Feng;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.26-31
    • /
    • 2007
  • A novel scanning probe measurement system was developed to enable precise profile measurements of microaspheric surfaces. An air-bearing stylus with a microprobe was used to perform the surface profile scanning. The new system worked in a contact mode and had the capability of measuring micro-aspheric surfaces with large tilt angles and complex profiles. Due to limitations resulting from the contact mode, such as possible damage caused by the contact force and lateral resolution restrictions from the curvature of the probe tip, several system improvements were implemented. An air bearing was used to suspend the shaft of the probe to reduce the contact force, enabling fine adjustments of the contact force by changing the air pressure. The movement of the shaft was measured by a linear encoder with a scale attached to the actual shaft to avoid Abbe errors. A $50-{\mu}m-diameter$ glass sphere was bonded to the tip of the probe to improve the lateral resolution of the system. The maximum contact force of the probe was 10 mN. The shaft was capable of holding the probe continuously if the contact force was less than 40 mN, and the resolution of the probe could be as high as 10 nm, The performance of the new scanning probe measurement system was verified by experimental data.