• 제목/요약/키워드: Micro crack propagation

검색결과 95건 처리시간 0.024초

微小圓孔 및 微小슬릿材의 疲勞크랙 傳播擧動 (Behavior of Fatigue Crack Propagation of Micro-Hole and Micro-Slit Specimensns - For High-Frequency Heat Treantment Specimens -)

  • 송삼홍;윤명진
    • 대한기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.78-85
    • /
    • 1986
  • 본 연구에서는 결함재의 결함선단에 발생 전파하는 피로거동을 검토하기 위해서 미소원공과 미소슬릿을 가공하고, 이것들의 피로한도를 기준으로 해서 이들 결함의 형상이 피로크랙 전파특성에 미치는 영향을 상세히 고찰하고자 한다.

두개의 미소원공결함에서의 피로크랙발생과 전파에 관한 연구 (Fatigue Crack Initiation and Propagation From Two Micro Hole Defects)

  • 송삼홍;배준수
    • 대한기계학회논문집A
    • /
    • 제21권5호
    • /
    • pp.842-849
    • /
    • 1997
  • The aim of this study is an investigation of the interaction of two micro hole defects affecting fatigue crack initation life and propagation behavior. The locatio of two micro hole defects was considered as an angle of alignment and the distance between the centers of two micro hole defects. The fatigue cracking behavior is experimented under bending. When micro defects are located close to each other, the fatigue crack initiation lives are varied with their relative locations. In the experiments, the area of local plastic strain strongly played a role in the fatigue crack initiation lives. Therefore we introduce a parameter which contains the plastic deformation area at stress concentrations and propose a fatigue crack initiation life prediction curve. In addition, the directions and propagation rates of fatigue cracks initiated at two micro hole defects are studied experimentally.

미소원공주위의 피로크랙발생전파 거동에 관한 연구 (Behavior of Initiation and Propagation of Fatigue Cracks around Microholes)

  • 송삼홍;오환석
    • 한국해양공학회지
    • /
    • 제1권2호
    • /
    • pp.74-82
    • /
    • 1987
  • This study has been made to investigate into the behavior of fatigue limit, of fatigue crack initiation, and of fatigue crack propagation under the condition of rotating bending stress; specifically on the independency of stress field as well as the crack behavior of surface micro hole defect, which is made artificially through the specimen. The results obtained can be summarized as followa; 1) For the single micro hole defect, initiation of fatigue crack is occurred at both tips of microhole defect simultaneosly along the slip which are produced in the range of maximum principal stress arround micro hole defect independent of the size of micro hole defect. 2) For the neighbored deuble micro hole defects with equal size, in the range ($\frac{L}{r}$)ratio $\gtrsim$ 3 defined as the size of micro hole defect(2r) to the distance between the centers of micro hole defects (2L), the crack behavior of the micro hole defects is same as single one. However, for the range of $\frac{L}{r}$<3, the interference effect becomes significant as the ratio approaches to 1.

  • PDF

Microstructural Study of Creep-Fatigue Crack Propagation for Sn-3.0Ag-0.5Cu Lead-Free Solder

  • Woo, Tae-Wuk;Sakane, Masao;Kobayashi, Kaoru;Park, Hyun-Chul;Kim, Kwang-Soo
    • 마이크로전자및패키징학회지
    • /
    • 제17권3호
    • /
    • pp.33-41
    • /
    • 2010
  • Crack propagation mechanisms of Sn-3.0Ag-0.5Cu solder were studied in strain controlled push-pull creepfatigue conditions using the fast-fast (pp) and the slow-fast (cp) strain waveforms at 313 K. Transgranular cracking was found in the pp strain waveform which led to the cycle-dominant crack propagation and intergranular cracking in the cp strain waveform that led to the time-dominant crack propagation. The time-dominant crack propagation rate was faster than the cycle-dominant crack propagation rate when compared with J-integral range which resulted from the creep damage at the crack tip in the cp strain waveform. Clear recrystallization around the crack was found in the pp and the cp strain waveforms, but the recrystallized grain size in the cp strain waveform was smaller than that in the pp strain waveform. The cycle-dominant crack propagated in the normal direction to the specimen axis macroscopically, but the time-dominant crack propagated in the shear direction which was discussed in relation with shear micro cracks formed at the crack tip.

노치 에서의 피로 균열 발생 과 전파 에 관한 연구 (Fatigue Crack Initiation and Propagation at Notches)

  • 이강용;이택성
    • 대한기계학회논문집
    • /
    • 제8권2호
    • /
    • pp.141-144
    • /
    • 1984
  • 본 연구에서는 완전 역 피로응력(completely reversed fatgue stress)를 받는 타원 노치에서 균열 발생과 전파에 대한 이론 임계 피로 한도를 응력 세기 계수 개념 을 도입하여 임의의 재질과 임으의 타원 노치 형상에 대해서 적용할 수 있도록 유도하 며 그 결과는 기존 이론보다 Frost의 실험치에 더 잘 일치함을 보이고자 한다.

表面欠陷 에 發생하는 疲勞크랙擧動 (Behavior of Fatigue Crack Propagation from Surface Flaw)

  • 송삼홍;오환섭
    • 대한기계학회논문집
    • /
    • 제9권2호
    • /
    • pp.150-157
    • /
    • 1985
  • 본 연구에서는 자연적인 미소흠함주위에 발생, 전파하는 피로크랙의 거동을 검토하기 위하여, 기존재료가 갖고 있는 흠함이나 비금속개재물을 대신할 수 있다고 생각되는 크기가 다른 비관통 인공미성구멍을 갖는 여러 종류의 시험편을 준비하고, 이 시험편들이 갖는 인공미성구멍주위에 발생전파하는 피로크랙의 거동을, 금속현미경 관찰을 토대로 상세히 고찰하였다. 그리고 이러한 관찰을 기초로 하여 비관통인공미 성구멍의 대성에 따른 피로한계도거동에 대해서도 고찰하였다.

표면적분법을 이용한 콘크리트 댐의 균열 해석 (Crack Analysis of Concrete Gravity Dam Using Surface Integral Method)

  • 진치섭;이영호;손기석
    • 콘크리트학회논문집
    • /
    • 제12권3호
    • /
    • pp.31-37
    • /
    • 2000
  • When a crack is produced in a concrete structure, a micro crack zone of fracture process zone (FPZ) appears at the crack tip. To investigate the behaviour of this the micro crack zone, nonlinear fracture mechanics (NLFM) must be applied. However, when a massive concrete structure such as a concrete gravity dam is considered, the micro crack zone can be neglected and the structure can be assumed to have linear elastic fracture mechanics (LEFM) behaviour. This study is divided into two main topics : (1) Calculating stress intensity factor (SIF) at the crack tip by surface integral method and (2) Investigating the propagation of the initial crack. If the initial crack propagates, the angle of the propagation is calculated by using maximum circumferential tensile strength theory. This study, also, contains the effects of body forces and water pressures on the crack face.

임계정류피로크랙의 하한계 전파조건의 정량적 고찰 (Quantitative Study on Threshold Condition of Critical Non-propagating Crack)

  • 김민건
    • 산업기술연구
    • /
    • 제30권B호
    • /
    • pp.17-23
    • /
    • 2010
  • Since the propagation of a short fatigue crack is directly related to the large crack which causes the fracture of bulk specimen, the detailed study on the propagation of the short crack is essential to prevent the fatigue fracture. However, a number of recent studies have demonstrated that the short crack can grow at a low applied stress level which are predicted from the threshold condition of large crack. In present study, the threshold condition for the propagation of short fatigue crack is examined with respect to the micro-structure and cyclic loading history. Specimens employed in this study were decarburized eutectoid steels which have various decarburized ferrite volume fraction. Rotating bending fatigue test was carried out on these specimens with the special emphasis on the "critical non-propagating crack length" It is found that the reduction of the endurance limit of their particular micro-structures can be due to the increase of the length of critical non-propagating crack, and the quantitative relationship between the threshold stress ${\sigma}_{wo}$ and the critical non-propagating crack length $L_c$ can be written as ${\sigma}_{wo}{^m}{\cdot}L_c=C$ where m,C is constant. Further experiments were carried out on cyclic loading history on the length of critical non-propagating crack. It shown that the length of critical non-propagating crack is closely related to cyclic loading history.

  • PDF

프리크랙과 微小圓孔材의 크랙成長 下限界條件에 관한 硏究 (A Study on the Threshold Condition of Crack Propagation for Pre-Crack and Micro-Hole Specimens)

  • 송삼홍;윤명진
    • 대한기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.278-285
    • /
    • 1988
  • 본 연구에서는 SM15C재와 SM35C재에 퍼얼라이트, 페라이트 조직의 영향을 배재한 비교적 균질한 조직인 구상화시멘타이트조직과 SM35C재에 실용조직 이면서 비교적 균질한 조직인 마르텐사이트 조직을 만들고, 가공하였다.

In-situ Crack Propagation Observation of a Particle Reinforced Polymer Composite Using the Double Cleavage Drilled Compression Specimens

  • Lee Yeon-Soo;Yoon Young-Ki;Jeong Bo-Young;Yoon Hi-Seak
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.310-318
    • /
    • 2006
  • In this study, we investigate the feasibility of in-situ crack propagation by using a double cleavage drilled compression (DCDC) specimen showing a slow crack velocity down to 0.03 mm/s under 0.01 mm/s of displacement control. Finite element analysis predicted that the DCDC specimens would show at least 4.3 fold delayed crack initiation time than conventional tensile fracture specimens under a constant loading speed. Using DCDC specimens, we were able to observe the in-situ crack propagation process in a particle reinforced transparent polymer composite. Our results confirmed that the DCDC specimen would be a good candidate for the in-situ observation of the behavior of particle reinforced composites with slow crack velocity, such as the self-healing process of micro-particle reinforced composites.