• Title/Summary/Keyword: Micro crack

Search Result 505, Processing Time 0.024 seconds

Analytical solutions for static bending of edge cracked micro beams

  • Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.579-599
    • /
    • 2016
  • In this study, static bending of edge cracked micro beams is studied analytically under uniformly distributed transverse loading based on modified couple stress theory. The cracked beam is modelled using a proper modification of the classical cracked-beam theory consisting of two sub-beams connected through a massless elastic rotational spring. The deflection curve expressions of the edge cracked microbeam segments separated by the rotational spring are determined by the Integration method. The elastic curve functions of the edge cracked micro beams are obtained in explicit form for cantilever and simply supported beams. In order to establish the accuracy of the present formulation and results, the deflections are obtained, and compared with the published results available in the literature. Good agreement is observed. In the numerical study, the elastic deflections of the edge cracked micro beams are calculated and discussed for different crack positions, different lengths of the beam, different length scale parameter, different crack depths, and some typical boundary conditions. Also, the difference between the classical beam theory and modified couple stress theory is investigated for static bending of edge cracked microbeams. It is believed that the tabulated results will be a reference with which other researchers can compare their results.

Velocity-porosity relationships in oceanic basalt from eastern flank of the Juan de Fuca Ridge: The effect of crack closure on seismic velocity (Juan do Fuca 해저산맥의 동쪽 측면으로부터 얻은 해양성 현무암의 속도와 공극률의 관계: 균열닫힘이 탄성파 속도에 미치는 영향)

  • Tsuji, Takeshi;Iturrino, Gerardo J.
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.41-51
    • /
    • 2008
  • To construct in situ velocity-porosity relationships for oceanic basalt, considering crack features, P- and S-wave velocity measurements on basaltic samples obtained from the eastern flank of the Juan de Fuca Ridge were carried out under confining pressures up to 40 MPa. Assuming that the changes in velocities with confining pressures are originated by micro-crack closure, we estimated micro-crack aspect ratio spectra using the Kuster-$Toks{\ddot{o}}z$ theory. The result demonstrates that the normalised aspect ratio spectra of the different samples have similar characteristics. From the normalised aspect ratio spectrum, we then constructed theoretical velocity-porosity relationships by calculating an aspect ratio spectrum for each porosity. In addition, by considering micro-crack closure due to confining pressure, a velocity-porosity relationship as a function of confining pressure could be obtained. The theoretical relationships that take into account the aspect ratio spectra are consistent with the observed relationships for over 100 discrete samples measured at atmospheric pressure, and the commonly observed pressure dependent relationships for a wide porosity range. The agreement between the laboratory-derived data and theoretically estimated values demonstrates that the velocity-porosity relationships of the basaltic samples obtained from the eastern flank of the Juan de Fuca Ridge, and their pressure dependence, can be described by the crack features (i.e. normalised aspect ratio spectra) and crack closure.

Comparison of Threshold Stress Intensity Factor and Fatigue Limit for Micro-crack of Offshore Structural Steel F690

  • Gu, Kyoung-Hee;Lee, Gum-Hwa;Lee, Weon-Gu;Oh, Chang-Seok;Nam, Ki-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_1
    • /
    • pp.141-148
    • /
    • 2022
  • In this paper, the evaluation equations proposed by Tange et al. and Ando et al. were used to evaluate the threshold stress intensity factor ∆KRth(s) and fatigue limit ∆𝜎Rwc, according to the small crack of offshore structural steel F690. Despite the differences in concept and shape of the two equations, the ∆KRth(s) and ∆𝜎Rwc proved completely consistent. It is possible to use these equations to evaluate the dependence of the crack length on the ∆KRth(s) and ∆𝜎Rwc of structures made of all steel grades. With these equations, the characteristics of microcracks can be quantitatively evaluated, and the safety and reliability of the structure can be secured.

Effect of Micro-Cracks on Chloride Ions Penetration of Concrete: Phonomenological Model (미세균열이 콘크리트의 염소이온 침투에 미치는 영향: 현상학적 모델)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.57-65
    • /
    • 2007
  • Over the past few decades, considerable numbers of studies on the durability of concrete have been carried out extensively. A lot of improvements have been achieved especially in both measuring techniques as well as modeling of ionic flows. However, the majority of these researches have been performed on sound uncracked concrete, although most of in-situ concrete structures have more or less micro-cracks. It is only recent approach that the attention has shifted towards the influence of cracks and crack width on the penetration of chloride into concrete. The penetration of chlorides into concrete through the cracks can make a significant harmful effect on reinforcement corrosion. On the other hand, a general acceptable crack width of 0.3 mm has been recognized for keeping the serviceability of concrete structures in accordance with a lot of codes. However, there seems to be rare established description to explain the critical crack width in terms of the durability of concrete. To make a bad situation worse, there is little agreement on critical crack width among a few of literatures for this issue. Critical crack width is still controversial problem. Nevertheless, since the critical crack width is important key for healthy assessment of concrete structures exposed to marine environment, it should be established. The objective of this study is to define a critical crack width. The critical crack width in this study is designed for a threshold crack width, which contributes to the first variation of chloride diffusion coefficient in responsive to the existence of cracks. A simple solution is formulated to realize the quantifiable parameter, chloride diffusion coefficient for only cracked zone excluding sound concrete. From the examination on the trend of chloride diffusion coefficient of only cracked zone for various crack widths, a critical crack width is founded out.

Pore Structure of Cement Matrix Exposed to High Temperatures (고온하의 시멘트 경화체의 공극구조)

  • 송훈;도정윤;소승영;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.509-512
    • /
    • 2003
  • Dehydration and micro crack thermal expansion occur in cement hydrates of concrete structure heated by fire for a long time. The characteristic of concrete exposed to high temperature can be analyzed from distribution of porosity and pore size. Porosity showed a tendency to increase irrespective of specimen types. This is due to both the outbreak of collapse of gel comprising the cement and a micro crack by heating. Porosity did not affect the variety of specimen and increased with the same tendency throughout every specimen. In addition, the deteriorate of compressive strength resulted from increase in porosity

  • PDF

Optimal Parameter Selection of Near-Infrared Optics Based Design of Experiment for Silicon Wafer in Solar Cell (태양전지 실리콘 웨이퍼를 위한 실험계획법 기반 근적외선 광학계의 최적조건 선정)

  • Seo, Hyoung Jun;Kim, Gyung Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.29-34
    • /
    • 2013
  • Solar cell has been considered as renewable green energy. Its silicon wafer thickness is thinner due to manufacturing cost and accordingly micro cracks is often generated in the process. Micro cracks result in bad quality of solar cell, and so their accurate and reliable detection is required. In this paper, near-infrared optics system is newly designed based on the analysis of near-infrared transmittance characteristics and its important parameters are optimally selected using the design of experiment for micro crack detection in solar cell wafer. The performance of the proposed method is verified using several experiments.

Effects of Crack Velocity on Fracture Properties of Modified S-FPZ Model (수정 특이-파괴진행대이론의 파괴특성에 대한 균열속도의 영향)

  • Yon Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.511-520
    • /
    • 2004
  • The fracture energy evaluated from the previous experimental results can be simulated by using the modified singular fracture process zone (S-FPZ) model. The fracture model has two fracture properties of strain energy release rate for crack extension and crack close stress versus crack width relationship $f_{ccs}$ ( w ) for fracture process zone (FPZ) development. The $f_{ccs}$( w ) relationship is not sensitive to specimen geometry and crack velocity. The fracture energy rate in the FPZ increases linearly with crack extension until the FPZ is fully developed. The fracture criterion of the strain energy release rate depends on specimen geometry and crack velocity as a function of crack extension. The variation of strain energy release rate with crack extension can explain theoretically the micro-cracking, micro-crack localization and full development of the FPZ in concrete.

Micro-Crack Analysis from Ultra-Precision Diamond Turning of IR Optic Material (적외선 광학 소재의 초정밀 선삭가공시 발생하는 미세균열 연구)

  • Jeong, Byeongjoon;Kim, Geon-Hee;Myung, Tae Sik;Chung, Eui-Sik;Choi, Hwan-Jin;Yeo, In Ju;Jeon, Minwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.11
    • /
    • pp.905-910
    • /
    • 2016
  • Infrared (IR) optic lens can be fabricated by a single point diamond turning (SPDT) machine without subsequent polishing process. However, this machining process often leaves micro-cracks that deteriorate the surface quality. In this work, we propose an experimental design to remove micro-cracks on IR lens. The proposed design gathered data between cutting process condition and Rt surface roughness. This is of great importance because the scale of micro-cracks is a few micrometer. Rt surface roughness is suitable for analyzing maximum peak height signals of the profile. The experimental results indicate that feed per revolution variable is one of the most dominant variable, affecting the generation micro-cracks on IR lens surfaces.

Modified Micro-Mechanical Fiber Bridging Model for Crack Plane of Fiber Rreinforced Cementitious Composite (섬유보강 복합체의 균열면 해석을 위한 수정 미세역학 모델)

  • Shin, Kyung-Joon;Park, Jong-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.365-368
    • /
    • 2006
  • In this paper, the post cracking stress-crack width relationship of the composite is studied from a micromechanics points of view. Cook-Gordon debonding effect is studied by more refined method with considering of chemical friction of fiber interface. As a result, fiber with pre-debonding length retards stress development and shows more wide crack width for the same force level. longer pre-debonding length and lower pre-debonding bond strength results in lower full-debonding force, but same crack width.

  • PDF

The Effect of the DIC Speckle Patterns for a Microcrack Measurement (미소균열 측정에 대한 DIC 스펙클 형상의 영향)

  • Lee, Jun Hyuk;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.15-21
    • /
    • 2019
  • In order to secure the safety of various machinery, it is very important to develop a technique for accurately and quickly measuring the cracks generated in the mechanical equipment and evaluating the mechanical characteristics. The evaluation of the mechanical properties is accompanied by an appropriate strain measurement according to the material and crack occurrence of the target structure. Especially, when micro cracks are generated, the evaluation method is very important. Digital image correlation is an optical full field displacement measuring method which is using currently with speckles in the interested area. However the evaluation method and conditions of image distributions have to be considered carefully to measure the crack occurrence because the images of the speckle patterns affect the quality of displacement results. In this study, the speckle pattern density is characterized to improve the accuracy of the measurement method. And also the micro crack initiation is detected by the measured displacement in the adopted speckle pattern distribution. It is shown that the proposed method is useful to determine the density pattern distribution for the accurate measurement and crack detection.