• Title/Summary/Keyword: Micro behavior

Search Result 1,053, Processing Time 0.028 seconds

Concrete pavement monitoring with PPP-BOTDA distributed strain and crack sensors

  • Bao, Yi;Tang, Fujian;Chen, Yizheng;Meng, Weina;Huang, Ying;Chen, Genda
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.405-423
    • /
    • 2016
  • In this study, the feasibility of using telecommunication single-mode optical fiber (SMF) as a distributed fiber optic strain and crack sensor was evaluated in concrete pavement monitoring. Tensile tests on various sensors indicated that the $SMF-28e^+$ fiber revealed linear elastic behavior to rupture at approximately 26 N load and 2.6% strain. Six full-scale concrete panels were prepared and tested under truck and three-point loads to quantify the performance of sensors with pulse pre-pump Brillouin optical time domain analysis (PPP-BOTDA). The sensors were protected by precast mortar from brutal action during concrete casting. Once air-cured for 2 hours after initial setting, half a mortar cylinder of 12 mm in diameter ensured that the protected sensors remained functional during and after concrete casting. The strains measured from PPP-BOTDA with a sensitivity coefficient of $5.43{\times}10^{-5}GHz/{\mu}{\varepsilon}$ were validated locally by commercial fiber Bragg grating (FBG) sensors. Unlike the point FBG sensors, the distributed PPP-BOTDA sensors can be utilized to effectively locate multiple cracks. Depending on their layout, the distributed sensors can provide one- or two-dimensional strain fields in pavement panels. The width of both micro and major cracks can be linearly related to the peak strain directly measured with the distributed fiber optic sensor.

Tribological Performance of Ni-Cr Composite Coating Sprayed onto AISI 4340 (SNCM439) Steel by High Velocity Oxygen Fuel

  • Umarov, Rakhmatjon;Pyun, Young-Sik;Amanov, Auezhan
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.217-225
    • /
    • 2018
  • In this study, we spray a Ni-Cr composite powder onto AISI 4340 steel using the high velocity oxygen fuel method. We subsequently subject the Ni-Cr coating (as-sprayed) to ultrasonic nanocrystal surface modification (UNSM) process to improve the tribological performance. This study aims at increasing the wear resistance and durability of the Ni-Cr coating by altering the surface integrity and microstructure via the UNSM process. The UNSM process reduces the surface roughness of the as-sprayed coating by about 64%, which is explained by observing the elimination of high peaks and valleys and filling up micro-pores. Furthermore, a change in the microstructure of the coating due to continuous high-frequency strikes to the surface by a tip can lead to an increase in hardness from about 48 to 60 HRC. Furthermore, we investigate the characterization of the friction and wear behavior of Ni-Cr coating by a ball-on-disc tribometer in the dry conditions. We determine that after the UNSM process, there is a significant reduction in the friction coefficient of the as-sprayed coating from approximately 1.1 to 0.75. This is owing to the increased hardness and smoothed surface roughness. In addition, we investigate the surface morphology and wear track of the coatings before and after the UNSM process using a scanning electron microscope, energy dispersive spectrometer, and three-dimensional laser scanning microscope. We observe that the wear track of the Ni-Cr coating after the UNSM process is lower than that of the as-sprayed one. Thus, we confirm that the UNSM process has a significant influence on the improvement of the tribological performance of the Ni-Cr composite coating.

Microscopic Traffic Parameters Estimation from UAV Video Using Multiple Object Tracking of Deep Learning-based (다중객체추적 알고리즘을 활용한 드론 항공영상 기반 미시적 교통데이터 추출)

  • Jung, Bokyung;Seo, Sunghyuk;Park, Boogi;Bae, Sanghoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.83-99
    • /
    • 2021
  • With the advent of the fourth industrial revolution, studies on driving management and driving strategies of autonomous vehicles are emerging. While obtaining microscopic traffic data on vehicles is essential for such research, we also see that conventional traffic data collection methods cannot collect the driving behavior of individual vehicles. In this study, UAV videos were used to collect traffic data from the viewpoint of the aerial base that is microscopic. To overcome the limitations of the related research in the literature, the micro-traffic data were estimated using the multiple object tracking of deep learning and an image registration technique. As a result, the speed obtained error rates of MAE 3.49 km/h, RMSE 4.43 km/h, and MAPE 5.18 km/h, and the traffic obtained a precision of 98.07% and a recall of 97.86%.

Formation of compound layers and Wear behavior of AISI4115 steels by gaseous nitriding process (AISI4115 기계구조용 합금강의 질화 가스분위기에 따른 화합물층의 형성 및 내마모특성)

  • Kim, Taehwan;Son, Seokwon;Cho, Kyuntaek;Lee, Kee-ahn;Lee, Won-beom
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.267-277
    • /
    • 2021
  • Nitriding layers developed during gaseous nitriding of AISI4115 steels for the application of steel bushing part were investigated. The compound layer thickness of about 10㎛, 0.3mm of case depth under the same conditions, and conventional nitriding, nitrocarburizing, and controlled nitriding were performed in three methods. In the controlled nitriding, KN was controlled by measuring the hydrogen partial pressure. The nitrided samples were analyzed by micro Vickers hardness test, optical microscopy and scanning electron microscopy. The phases of compound layer were identified by X-ray diffraction and electron backscatter diffraction. The controlled nitriding specimen indicated the highest surface hardness of about 860 HV0.1. The compound layer of the conventional nitriding and nitrocarburizing specimen was formed with about 46% porous layer and 𝜺 + 𝜸' phase, and about 13% porous layer and about 80% 𝜸' phase were formed on the controlled nitriding specimen. As a result of the Ball-on-disk wear test, the worn mass loss of ball performed on the surface of the controlled nitriding specimen was the largest. The controlled nitriding specimen had the highest surface hardness due to the lowest porous percentage of compound layer, which improved the wear resistance.

Thermophoretic Control of Particle Transport in a Microfluidic Channel (미세유체 채널 내에서 열영동에 의한 입자이동 제어)

  • So, Ju-Hee;Koo, Hyung-Jun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.730-734
    • /
    • 2019
  • Thermophoresis is a transport phenomenon of particles driven by a temperature gradient of a medium. In this paper, we discuss the thermophoresis of particles in microfluidic channels. In a non-fluidic, stagnant channel, the thermophoretic transport of micro-particles was found to be larger in proportion to the voltage applied to the platinum wire heat source installed in the channel. The variation of the temperature around the platinum wire depending on the voltage was estimated, by using the Callendar-van Dusen equation. The thermophoretic behavior of nano-particles in the same system was observed, which is similar to that of the microparticles. Finally, we fabricated a Y-shaped microfluidic channel with a platinum wire heat source installed in the channel, to realize the thermophoretic phenomenon of the particles in the suspension flowing through the channel. It is shown that the flow of the suspension can be controlled based on the thermophoretic principle.

Phase behavior of CO2 + H2O + 2,2,3,3,3-pentafluoro-1-propanol mixture (이산화탄소+물+2,2,3,3,3-pentafluoro-1-propanol 혼합물의 상거동)

  • Shin, Hun Yong
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.275-279
    • /
    • 2018
  • In this study, microemulsion formation of water and carbon dioxide was investigated by using surfactant as one of the methods for increasing the mutual solubility between water and carbon dioxide. The surfactant 2,2,3,3,3-Pentafluoro-1-propanol was added to form a microemulsion of water and carbon dioxide. The cloud point change and trend of micro emulsion were investigated by adding water and a certain amount of surfactant, 2,2,3,3,3-Pentafluoro-1-propanol to supercritical carbon dioxide. In the case of surfactant + carbon dioxide system, it was 8.35 ~ 12.69 MPa in temperature range of 313.2 ~ 353.2 K. In the case of water + surfactant + carbon dioxide system, the temperature ranged from 318.2 ~ 338.2 K to pressure range 7.83 ~ 17.28 MPa.

Thermo-mechanical vibration analysis of curved imperfect nano-beams based on nonlocal strain gradient theory

  • Ebrahimi, Farzad;Daman, Mohsen;Mahesh, Vinyas
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.249-263
    • /
    • 2019
  • In the current paper, an exact solution method is carried out for analyzing the thermo-mechanical vibration of curved FG nano-beams subjected to uniform thermal environmental conditions, by considering porosity distribution via nonlocal strain gradient beam theory for the first time. Nonlocal strain gradient elasticity theory is adopted to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field is considered. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Material properties of curved porous FG nanobeam are assumed to be temperature-dependent and are supposed to vary through the thickness direction of beam which modeled via modified power-law rule. Since variation of pores along the thickness direction influences the mechanical and physical properties, porosity play a key role in the mechanical response of curved FG nano-structures. The governing equations and related boundary condition of curved porous FG nanobeam under temperature field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved nanobeam supposed to thermal loading. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, porosity volume fractions, thermal effect, gradient index, opening angle and aspect ratio on the natural frequency of curved FG porous nanobeam are successfully discussed. It is concluded that these parameters play key roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

Enhancement of Wear and Corrosion Resistances of Monocrystalline Silicon Wafer (단결정 실리콘 웨이퍼의 내마모성 및 내식성 향상을 관한 연구)

  • Urmanov, B.;Ro, J.S.;Pyun, Y.S.;Amanov, A.
    • Tribology and Lubricants
    • /
    • v.35 no.3
    • /
    • pp.176-182
    • /
    • 2019
  • The primary objective of this study is to treat a monocrystalline silicon (Si) wafer having a thickness of $279{\mu}m$ by employing the ultrasonic nanocrystal surface modification (UNSM) technology for improving the efficiency and service life of nano-electromechanical systems (NEMSs) and micro-electromechanical systems (MEMSs) by enhancing of wear and corrosion resistances. The wear and corrosion resistances of the Si wafer were systematically investigated before and after UNSM treatment, wherein abrasive, oxidative and spalling wear mechanisms were applied to the as-received and subsequently UNSM-treated Si wafer. Compared to the asreceived state, the wear and corrosion resistances of the UNSM-treated Si wafer are found to be enhanced by about 23% and 14%, respectively. The enhancement in wear and corrosion resistances after UNSM treatment may be attributed to grain size refinement (confirmed by Raman spectroscopy) and modified surface integrity. Furthermore, it is observed that the Raman intensity reduced significantly after UNSM treatment, whereas neither the Raman shift nor new phases were found on the surface of the UNSM-treated Si wafer. In addition, the friction coefficient values of the as-received and UNSM-treated Si wafers are found to be about 0.54 and 0.39, respectively. Hence, UNSM technology can be effectively incorporated as an alternative mechanical surface treatment for NEMSs and MEMSs comprising Si wafers.

Computational optimized finite element modelling of mechanical interaction of concrete with fiber reinforced polymer

  • Arani, Khosro Shahpoori;Zandi, Yousef;Pham, Binh Thai;Mu'azu, M.A.;Katebi, Javad;Mohammadhassani, Mohammad;Khalafi, Seyedamirhesam;Mohamad, Edy Tonnizam;Wakil, Karzan;Khorami, Majid
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • This paper presents a computational rational model to predict the ultimate and optimized load capacity of reinforced concrete (RC) beams strengthened by a combination of longitudinal and transverse fiber reinforced polymer (FRP) composite plates/sheets (flexure and shear strengthening system). Several experimental and analytical studies on the confinement effect and failure mechanisms of fiber reinforced polymer (FRP) wrapped columns have been conducted over recent years. Although typical axial members are large-scale square/rectangular reinforced concrete (RC) columns in practice, the majority of such studies have concentrated on the behavior of small-scale circular concrete specimens. A high performance concrete, known as polymer concrete, made up of natural aggregates and an orthophthalic polyester binder, reinforced with non-metallic bars (glass reinforced polymer) has been studied. The material is described at micro and macro level, presenting the key physical and mechanical properties using different experimental techniques. Furthermore, a full description of non-metallic bars is presented to evaluate its structural expectancies, embedded in the polymer concrete matrix. In this paper, the mechanism of mechanical interaction of smooth and lugged FRP rods with concrete is presented. A general modeling and application of various elements are demonstrated. The contact parameters are defined and the procedures of calculation and evaluation of contact parameters are introduced. The method of calibration of the calculated parameters is presented. Finally, the numerical results are obtained for different bond parameters which show a good agreement with experimental results reported in literature.

Corrosion and mechanical properties of hot-rolled 0.5%Gd-0.8%B-stainless steels in a simulated nuclear waste treatment solution

  • Jung, Moo Young;Baik, Youl;Choi, Yong;Sohn, D.S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.207-213
    • /
    • 2019
  • Corrosion and mechanical behavior of the hot-rolled 0.5%Gd-0.8%B-stainless steel to develop a spent nuclear fuel storage material was studied in a simulated nuclear waste treatment condition with rolling condition. The austenite and ferrite phases of the 0.5%Gd-0.8%B-stainless steels are about 88:12. The average austenite and ferrite grain size of the plane normal to rolling, transverse and normal directions of the hot rolled specimens are about 5.08, 8.94, 19.35, 23.29, 26.00 and 18.11 [${\mu}m$], respectively. The average micro-hardness of the as-cast specimen is 200.4 Hv, whereas, that of the hot-rolled specimen are 220.1, 204.7 and 203.5 [$H_v$] for the plane normal to RD, TD and ND, respectively. The UTS, YS and elongation of the as-cast and the hot-rolled specimen are 699, 484 [MPa], 34.0%, and 654, 432 [MPa] and 33.3%, respectively. The passivity was observed both for the as-cast and the hot rolled specimens in a simulated nuclear waste solution. The corrosion potential and corrosion rate of the as-casted specimens are $-343[mV_{SHE}]$ and $3.26{\times}10^{-7}[A/cm^2]$, whereas, those of the hot rolled specimens with normal to ND, RD and TD are -630, -512 and -620 [$mV_{SHE}$] and $6.12{\times}10^{-7}$, $1.04{\times}10^{-6}$ and $6.92{\times}10^{-7}[A/cm^2]$, respectively. Corrosion tends to occur preferentially Cr and B rich area.