• 제목/요약/키워드: Micro behavior

검색결과 1,044건 처리시간 0.028초

微小圓孔材의 疲勞크랙擧動 과 페라이트 結晶粒度 (Behavior of Fatigue Crack around Micro-Hole and Ferrite Grain Size)

  • 송삼홍;오환섭
    • 대한기계학회논문집
    • /
    • 제9권4호
    • /
    • pp.421-429
    • /
    • 1985
  • 본 연구에서는 결함에서 발생전파하는 피로크랙거동과 결정입대소와의 관계를 검토하기 위하여, 페라이트 결정입을 열처리에 의하여 변화시킨 재료에, 우선 .PHI.0.3mm 의 미소원공을 가공한 시험편을 준비하고, 피로한도거동, 피로크랙발생거동, 피로크랙 전파거동, 응력레벨의 고저에 따른 피로크랙의 발생, 전파거동등과 페라이트 결정입의 대소와의 관계등을 금속현미경 관찰을 토대로 상세히 고찰하였다.

고온용 MEMS 재료의 마이크로 파괴거동에 관한 연구 (A Study on the Micro-fracture Behavior of the MEMS Material at Elevated Temperature)

  • 우병훈;배창원;문경만;배성열;;김윤해
    • 대한기계학회논문집A
    • /
    • 제31권5호
    • /
    • pp.550-555
    • /
    • 2007
  • The effective fracture toughness testing of materials intended for application in Micro Electro Mechanical Systems (MEMS) devices is required in order to improve understanding of how micro sized material used in device may be expected to perform upon the micro scale. ${\gamma}$-TiAl based materials are being considered for application in MEMS devices at elevated temperatures. Especially, in Alloy 4, both ${\alpha}_2$ and ${\gamma}$ lamellae were altered markedly in 3,000 h, $700^{\circ}C$ exposure. Parallel decomposition of coarse ${\alpha}_2$ into bunches of very fine (${\alpha}_2+{\gamma}$) lamellae. Parallel decomposition of coarse ${\alpha}_2$ into bunches of very fine (${\alpha}_2+{\gamma}$) lamellae. The materials were examined 2 types Alloy 4 on heat exposed specimen($700^{\circ}C$, 3,000 h) and no heat exposed one. Micro sized cantilever beams were prepared mechanical polishing on both side at $25{\sim}30{\mu}m$ and electro final stage polishing to observe lamellar orientation of same colony with EBSD (Electron Backscatter Diffraction Pattern). Through lamellar orientation as inter-lamellae or trans-lamellae, Cantilever beam was fabricated with Focused Ion Beam(FIB). The directional behavior of the lamellar structure was important property in single material, because of the effects of the different processing method and variations in properties according to lamellar orientation. In MEMS application, it is first necessary to have a reliable understanding of the manufacturing methods to be used to produce micro structure.

Micro-CT - a digital 3D microstructural voyage into scaffolds: a systematic review of the reported methods and results

  • Cengiz, Ibrahim Fatih;Oliveira, Joaquim Miguel;Reis, Rui L.
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.279-289
    • /
    • 2018
  • Background: Cell behavior is the key to tissue regeneration. Given the fact that most of the cells used in tissue engineering are anchorage-dependent, their behavior including adhesion, growth, migration, matrix synthesis, and differentiation is related to the design of the scaffolds. Thus, characterization of the scaffolds is highly required. Micro-computed tomography (micro-CT) provides a powerful platform to analyze, visualize, and explore any portion of interest in the scaffold in a 3D fashion without cutting or destroying it with the benefit of almost no sample preparation need. Main body: This review highlights the relationship between the scaffold microstructure and cell behavior, and provides the basics of the micro-CT method. In this work, we also analyzed the original papers that were published in 2016 through a systematic search to address the need for specific improvements in the methods section of the papers including the amount of provided information from the obtained results. Conclusion: Micro-CT offers a unique microstructural analysis of biomaterials, notwithstanding the associated challenges and limitations. Future studies that will include micro-CT characterization of scaffolds should report the important details of the method, and the derived quantitative and qualitative information can be maximized.

Cantilever형 내시경 작동기의 진동과 제어의 해석

  • 박준형;김종현;이장무
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.761-764
    • /
    • 1995
  • This paper demonstrates the feasibility of utilizing Shape Memory Alloy(SMA) actuators in controlling the motion of micro active catherer. The dynamic behavior of SMA is obtained by several experiments for the design of the controller. Two different type of structures which realize catheter are proposed. Each prototype of micro active catherer is fabricated, and its control performance which used the designed controller is investigated. The results obtained show the potential of the SMA as viable means for actuating the micro active catheter.

  • PDF

MECHANICAL AND ADHESIONAL MANIPULATION TECHNIQUE FOR MICRO-ASSEMBLY UNDER SEM

  • Saito, Shigeki;Takahashi, Kunio;Onzawa, Tadao
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.720-725
    • /
    • 2002
  • In recent years, techniques for micro-assembly with high repeatability under a scanning electron microscope (SEM) are required to construct highly functional micro-devices. Adhesion phenomenon is more significant for smaller objects, becanse adhesional force is proportional to size of the objects while gravitational force is proportional to the third power of it. It is also known that adhesional force between micro-objects exposed to Electron Beam irradiation of SEM increases with the elapsed time. Therefore, mechanical manipulation techniques using a needle-shaped tool by adhesional force are often adopted in basic researches where micro-objects are studied. These techniques, however, have not yet achieved the desired repeatability because many of these could not have been supported theoretically. Some techniques even need the process of trial-and-error. Thus, in this paper, mechanical and adhesional micro-manipulation are analyzed theoretically by introducing new physical factors, such as adhesional force and rolling-resistance, into the kinematic system consisting of a sphere, a needle-shaped tool, and a substrate. Through this analysis, they are revealed that how the micro-sphere behavior depends on the given conditions, and that it is possible to cause the fracture of the desired contact interfaces selectively by controlling the force direction in which the tool-tip loads to the sphere. Based on the acquired knowledge, a mode diagram, which indicates the micro-sphere behavior for the given conditions, is designed. By refening to this mode diagram, the practical technique of the pick and place manipulation of a micro-sphere under an SEM by the selective interface fracture is proposed.

  • PDF

유한요소법에 의한 결함 주위의 응력분포와 피로크랙의 간섭효과 (Analysis of the stress disribution around flaws and the interaction effects between fatigue cracks by finite element method)

  • 송삼홍;김진봉
    • 한국정밀공학회지
    • /
    • 제12권2호
    • /
    • pp.154-161
    • /
    • 1995
  • In order to analysis of the stress distribution around flaws and the interaction effects between fatigue cracks, stress around micro hole was analyzed by Finite Element Method(F.E.M.) and micro hole specimens were tested using rotary bending fatigue machine and twisting fatigue machine to identify stress effects for fatigue cracks initiating from micro holes and interaction effects between micro holes. The results are as follows : Interaction effects of .sigma. $_{y}$for the micro hole side is larger than the large micro hole side when the interval between micro holes is near. Stress concentration factor increase as the diameter of micro hole becomes smaller. But, stress field of micro hole is smaller than that of large micro hole at h .leq. r (h:depth of micro hole, r:radius of micro hole) and that of large hole is larger than that of small micro hole at h >r expect the small range from micro hole.e.

  • PDF

미소구조에서의 탄소성모델 (Elasto-Plasticity of Granular Micro-Structures)

  • 박재균
    • 한국전산구조공학회논문집
    • /
    • 제18권4호통권70호
    • /
    • pp.453-458
    • /
    • 2005
  • 본 논문은 연속체역학에서의 탄소성모델을 그대로 재현할 수 있는 미소구조모델에 관해서 연구하였다. 물체를 일정크기를 지닌 입자와 그 입자들을 연결하는 선형 스프링으로 모델링한 Doublet Mechanics를 기본이론으로 하여 이를 소성 영역으로 확장하였다. 그 결과로 가장 단순한 가정을 하였을 경우 미소모델과 연속체모델이 정확히 일대일 대응을 하는 것을 보였다. 2차원 평면응력문제에 대한 예제를 통해 미소변형률과 미소응력을 계산하였고 그 결과로 거동에 대해 분석하여 이 모델의 유효성을 입증하였다.

LGP 사출성형 시의 미세충전 특성해석 (Investigation on micro/nano filling behavior in LGP injection molding)

  • 조기철;신홍규;김헌영;김병희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.91-94
    • /
    • 2006
  • In this paper, in order to get micro or nano size optical patterns, an analytical and experimental investigation on a LGP (light guide plate) injection molding process has performed. The LGP, which diffusing and emitting the light from the CCFL or the LEDs to the panel front direction uniformly, typically has an under 1mm thick base substrate and numerous 60 to $170{\mu}m$ width and 6 to $10{\mu}m$ thick dot patterns on it. Generally, the small size LGPs, for mobile devices, have been and are being made of PMMA through the injection molding process. However, the substrate thickness and the dot pattern size are decreasing, it becomes hard to fill the micro to sub-micro cavities completely. To investigate the flow behavior of resin in micro/nano cavities and identify the characteristics of the LGP injection molding process, we carried out the flow analyses with respect to the variations of the substrate thickness, the dot pattern size and the pitch of a cavity.

  • PDF