• Title/Summary/Keyword: Micro and Nano

Search Result 1,199, Processing Time 0.031 seconds

The Development of Micro Milling Machine (초소형 밀링머신 개발)

  • Hwang J.;Chung E.S.;Cox Danel;Liang StevenY.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1171-1174
    • /
    • 2005
  • Manufacturing capability at the micro or nano scale production field is requested strongly in view of parts and product miniaturization. Miniaturized parts and products will introduce lots of benefits in terms of high precision functionality and low energy consumption. This paper presents the results of micro milling machine tool development for micro machining process. Finite element analysis has been performed to know the relationship between design dimensional variables and structural stiffness in terms of static, dynamic, thermal aspects. Performance evaluation through machining has been tested and discussed for achievable machining characteristics.

  • PDF

Electrodeposition and characterization of Ni-W-Si3N4 alloy composite coatings

  • Choi, Jinhyuk;Gyawali, Gobinda;Lee, Soo Wohn
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.171-172
    • /
    • 2015
  • $Ni-W-Si_3N_4$ alloy composite coatings were prepared by pulse electro-deposition method using nickel sulfate bath with different contents of tungsten source, $Na_2WO_4.2H_2O$, and dispersed $Si_3N_4$ nano-particles. The structure and micro-structure of coatings was separately analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). Results indicated that nano $Si_3N_4$ and W content in alloy had remarkable effect on micro-structure, micro-hardness and scratch resistant properties. Tungsten content in Ni-W and $Ni-W-Si_3N_4$ alloy ranged from 7 to 14 at.%. Scratch test results suggest that as compared to Ni-W only, $Ni-W-Si_3N_4$ prepared from Ni/W molar ratio of 1:1.5 dispersed with 20 g/L $Si_3N_4$ has shown the best result among different samples.

  • PDF

Fabrication of Tungsten Powder Mixtures with Nano and Micro Size by Reduction of Tungsten Oxides (텅스텐 산화물의 환원을 이용한 나노/마이크로 크기 텅스텐 혼합분말 제조)

  • Kwon, Na-Yeon;Jeong, Young-Keun;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.27 no.10
    • /
    • pp.513-517
    • /
    • 2017
  • An optimum route to fabricate a hybrid-structured W powder composed of nano and micro size powders was investigated. The mixture of nano and micro W powders was prepared by a ball milling and hydrogen reduction process for $WO_3$ and W powders. Microstructural observation for the ball-milled powder mixtures revealed that the nano-sized $WO_3$ particles were homogeneously distributed on the surface of large W powders. The reduction behavior of $WO_3$ powder was analyzed by a temperature programmed reduction method with different heating rates in Ar-10% $H_2$ atmosphere. The activation energies for the reduction of $WO_3$, estimated by the slope of the Kissinger plot from the amount of reaction peak shift with heating rates, were measured as 117.4 kJ/mol and 94.6 kJ/mol depending on reduction steps from $WO_3$ to $WO_2$ and from $WO_2$ to W, respectively. SEM and XRD analysis for the hydrogen-reduced powder mixture showed that the nano-sized W particles were well distributed on the surface of the micro-sized W powders.

Investigation on micro/nano filling behavior in LGP injection molding (LGP 사출성형 시의 미세충전 특성해석)

  • Cho, K.C.;Shin, H.G.;Kim, H.Y.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.91-94
    • /
    • 2006
  • In this paper, in order to get micro or nano size optical patterns, an analytical and experimental investigation on a LGP (light guide plate) injection molding process has performed. The LGP, which diffusing and emitting the light from the CCFL or the LEDs to the panel front direction uniformly, typically has an under 1mm thick base substrate and numerous 60 to $170{\mu}m$ width and 6 to $10{\mu}m$ thick dot patterns on it. Generally, the small size LGPs, for mobile devices, have been and are being made of PMMA through the injection molding process. However, the substrate thickness and the dot pattern size are decreasing, it becomes hard to fill the micro to sub-micro cavities completely. To investigate the flow behavior of resin in micro/nano cavities and identify the characteristics of the LGP injection molding process, we carried out the flow analyses with respect to the variations of the substrate thickness, the dot pattern size and the pitch of a cavity.

  • PDF

Nano/Micro-friction properties or Chemical Vapor Deposited (CVD) Self-assembled monolayers on Si-wafer

  • Yoon Eui-Sung;Singh R.Arvind;Han Hung-Gu;Kong Hosung
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.90-98
    • /
    • 2004
  • Nano/micro-scale studies on friction properties were conducted on Si (100) and three self-assembled monolayers (SAMs) (PFOTC, DMDM, DPDM) coated on Si-wafer by chemical vapor deposition technique. Experiments were conducted at ambient temperature $(24{\pm}1^{\circ}C)$ and humidity $(45{\pm}5\%)$. Nano-friction was evaluated using Atomic Force Microscopy (AFM) in the range of 0-40nN normal loads. In both Si-wafer and SAMs, friction increased linearly as a function of applied normal load. Results showed that friction was affected by the inherent adhesion in Si-wafer, and in the case of SAMs the physical/chemical structures had a major influence. Coefficient of friction of these test samples was also evaluated at the micro-scale using a micro-tribotester. It was observed that SAMs had superior frictional property due to their low interfacial energies. In order to study of the effect of contact area on friction coefficient at the micro-scale, friction was measured for Si-wafer and DPDM against Soda Lime balls (Duke Scientific Corporation) of different radii 0.25 mm, 0.5 mm and 1 mm at different applied normal loads $(1500,\;3000\;and\;4800{\mu}N)$. Results showed that Si-wafer had higher friction coefficient than DPDM. Furthermore, unlike that in the case of DPDM, friction was severely influenced by wear in the case of Si-wafer. SEM evidences showed that solid-solid adhesion to be the wear mechanism in Si-wafer.

  • PDF

Effect of Powder Mixing Process on the Characteristics of Hybrid Structure Tungsten Powders with Nano-Micro Size (나노-마이크로 크기 하이브리드 구조 텅스텐 분말특성에 미치는 분말혼합 공정의 영향)

  • Kwon, Na-Yeon;Jeong, Young-Keun;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.384-388
    • /
    • 2017
  • The effect of the mixing method on the characteristics of hybrid-structure W powder with nano and micro sizes is investigated. Fine $WO_3$ powders with sizes of ${\sim}0.6{\mu}m$, prepared by ball milling for 10 h, are mixed with pure W powder with sizes of $12{\mu}m$ by various mixing process. In the case of simple mixing with ball-milled $WO_3$ and micro sized W powders, $WO_3$ particles are locally present in the form of agglomerates in the surface of large W powders, but in the case of ball milling, a relatively uniform distribution of $WO_3$ particles is exhibited. The microstructural observation reveals that the ball milled $WO_3$ powder, heat-treated at $750^{\circ}C$ for 1 h in a hydrogen atmosphere, is fine W particles of ~200 nm or less. The powder mixture prepared by simple mixing and hydrogen reduction exhibits the formation of coarse W particles with agglomeration of the micro sized W powder on the surface. Conversely, in the powder mixture fabricated by ball milling and hydrogen reduction, a uniform distribution of fine W particles forming nano-micro sized hybrid structure is observed.

Biosensors: a review (바이오센서)

  • Hwang, Kyo-Seon;Kim, Sang-Kyung;Kim, Tae-Song
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.251-262
    • /
    • 2009
  • Biosensors exploit the specific binding between recognition molecule on the biosensor surface and target molecule in analyte and are used in the detection of specific biomolecules such as protein, DNA, cell, virus, etc., with a view towards developing analytical devices. Recently, application field of biosensors have been expanding from diagnosis to biodefense because they can basically serve as high performance devices. This review describes the basic information of biosensors including definition, classification, and operational principle. Moreover, we introduce micro/nano technology-based biosensors with better detection performance than traditional method and their application examples.

Fabrication of Three-Dimensional Micro-Shell Structures Using Two-Photon Polymerization (이광자 흡수 광중합에 의한 3차원 마이크로 쉘 구조물 제작)

  • Park Sang Hu;Lim Tae Woo;Yang Dong-Yol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.998-1004
    • /
    • 2005
  • A nano-stereolithography (NSL) process has been developed for fabrication of 3D shell structures which can be applied to various nano/micro-fluidic devices. By the process, a complicated 3D shell structure on a scale of several microns can be fabricated using lamination of layers with a resolution of 150 nm in size, so it does not require the use of my sacrificial layer or any supporting structure. A layer was fabricated by means of solidifying liquid-state monomers using two-photon absorption (TPA) induced using a femtosecond laser processing. When the polymerization process is finished, unsolidified liquid state resins can be removed easily by dropping several droplets of ethanol fur developing the fabricated structure. Through this work, some 3D shell structures, which can be applied to various applications such as nano/micro-fluidic devices and MEMS system, were fabricated using the developed process.

Design and Multi-scale Analysis of Micro Contact Printing (미세접촉인쇄기법의 설계와 다중스케일해석)

  • Kim, Jung-Yup;Kim, Jae-Hyun;Choi, Byung-Ik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1927-1931
    • /
    • 2003
  • Nanometer-sized structures are being applied to many fields including micro/nano electronics, optoelectronics, quantum computing, biosensors, etc. Micro contact printing is one of the most promising methods for manufacturing the nanometer-sized structures. The crucial element for the micro contact printing is the nano-resolution printing technique using polymeric stamps. In this study, a multi-scale analysis scheme for simulating the micro contact printing process is proposed and some useful analysis results are presented. Using the slip-link model [1], the dependency of viscoelasticity on molecular weight of polymer stamp is predicted. Deformation behaviors of polymeric stamps are analyzed using finite element method based upon the predicted viscoelastic properties.

  • PDF

Size-dependent Toxicity of Metal Oxide Particles on the Soil Microbial Community and Growth of Zea Mays (산화 금속 입자 크기가 옥수수의 성장과 토양 미생물 군집에 미치는 독성)

  • Kim, Sung-Hyun;Jung, Mi-Ae;Lee, In-Sook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.12
    • /
    • pp.1069-1074
    • /
    • 2009
  • This study investigated soil microbial community and growth of Zea mays to compare the toxicity of nano and micro-sized Cu and Zn oxide particles in microcosm system. In the presence of nanoparticles, biomass of Zea mays reduced by 30% compared with micro-sized particles and inhibited growth. Dehydrogenase activity was inhibited by CuO nano although it was increased by ZnO nano particles. According to the Biolog test, the microbial diversity was decreased after exposed to CuO nanoparticles and ZnO microparticles. Therefore, though it is widely recognized that nanoparticles are more harmful than microparticles, we can conclude that the diversity of microbial community does not always influenced by the size of particles of nano and micro.