• Title/Summary/Keyword: Micro Vision

Search Result 108, Processing Time 0.026 seconds

A Portable Micro-display Driver and Device for Vision Improvement (시력 향상을 위한 휴대형 마이크로디스플레이 구동 드라이버 및 장치)

  • Ryu, Young-Kee;Oh, Choonsuk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.129-135
    • /
    • 2016
  • There are many visual enhancement devices for people with low vision. However, almost conventional devices have been simple magnifying and high cost. The symptoms of people with low vision are very variety. It needs to control of image magnifying, brightness, and contrast to improve the visuality. We developed a portable microdisplay driver and device for visual enhancement. This device based on our suggested four methods such as image magnifying, specific color control, BLU brightness control, and visual axis control using a prism. The basic clinical experiments of the proposed Head Mounted Visual Enhancement Device (HMVED) have been performed. The results show beneficiary effects compared with conventional devices, and improve the life quality on people with low vision on account of low weight, low cost, and easy portability.

Enhancement of 3D Scanning Performance by Correcting the Photometric Distortion of a Micro Projector-Camera System (초소형 카메라-프로젝터의 광학왜곡 보정을 이용한 위상변이 방식 3차원 스캐닝의 성능 향상)

  • Park, Go Gwang;Baek, Seung-Hae;Park, Soon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.219-226
    • /
    • 2013
  • A distortion correction technique is presented to enhance the 3D scanning performance of a micro-size camera-projector system. Recently, several types of micro-size digital projectors and cameras are available. However, there have been few effort to develop a micro-size 3D scanning system. We develop a micro-sized 3D scanning system which is based on the structured light technique. Three images of phase-shifted sinusoidal patterns are projected, captured, and analyzed by the system to reconstruct 3D shapes of very small objects. To overcome inherent optical imperfection of the micro 3D sensor, we correct the vignetting and blooming effects which cause distortions in the phase image. Error analysis and 3D scanning results on small real objects are presented to show the performance of the developed 3D scanning system.

Microassembly System for the assembly of photonic components (광 부품 조립을 위한 마이크로 조립 시스템)

  • 강현재;김상민;남궁영우;김병규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.241-245
    • /
    • 2003
  • In this paper, a microassembly system based on hybrid manipulation schemes is proposed and applied to the assembly of a photonic component. In order to achieve both high precision and dexterity in microassembly, we propose a hybrid microassembly system with sensory feedbacks of vision and force. This system consists of the distributed 6-DOF micromanipulation units, the stereo microscope, and haptic interface for the force feedback-based microassembly. A hybrid assembly method, which combines the vision-based microassembly and the scaled teleoperated microassembly with force feedback, is proposed. The feasibility of the proposed method is investigated via experimental studies for assembling micro opto-electrical components. Experimental results show that the hybrid microassembly system is feasible for applications to the assembly of photonic components in the commercial market with better flexibility and efficiency.

  • PDF

Study on Modeling and Experiment of Optical Three Axis Tool-Origin Sensor for Applications of Micro Machine-Tools (초소형 공작기계 적용을 고려한 광학식 3 축 공구원점 센서 모델링 및 실험에 관한 연구)

  • Shin, Woo-Cheol;Lee, Hyeon-Hwa;Ro, Seung-Kook;Park, Jong-Kweon;Noh, Myoung-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.68-73
    • /
    • 2009
  • One of the traditional optical methods to monitor a tool is a CCD sensor-based vision system which captures an aspect of the tool in real time. In the case using the CCD sensor, specific lens-modules are necessary to monitor the tool with higher resolution than its pixel size, and a microprocessor is required to attain desired data from captured images. Thus theses additional devices make the entire measurement system complex. Another method is to use a pair of an optical source and a detector per measuring axis. Since the method is based on the intensity modulation, the structure of the measurement system is simper than the CCD sensor-based vision system. However, in the case measuring the three dimensional position of the tool, it is difficult to apply to micro machine-tools because there may not be space to integrate three pairs of an optical source and a detector. In this paper, in order to develop a tool-origin measurement system which is employed in micro machine-tools, the improved method to measure a tool origin in x, y and z axes is introduced. The method is based on the intensity modulation and employs one pair of an optical source radiating divergent beams and a quadrant photodiode to detect a three dimensional position of the tool. This paper presents the measurement models of the proposed tool-origin sensor. The models were verified experimentally The verification results show that the proposed method is possible and the induced models are available for design.

Target Tracking Control of a Quadrotor UAV using Vision Sensor (비전 센서를 이용한 쿼드로터형 무인비행체의 목표 추적 제어)

  • Yoo, Min-Goo;Hong, Sung-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.118-128
    • /
    • 2012
  • The goal of this paper is to design the target tracking controller for a quadrotor micro UAV using a vision sensor. First of all, the mathematical model of the quadrotor was estimated through the Prediction Error Method(PEM) using experimental input/output flight data, and then the estimated model was validated via the comparison with new experimental flight data. Next, the target tracking controller was designed using LQR(Linear Quadratic Regulator) method based on the estimated model. The relative distance between an object and the quadrotor was obtained by a vision sensor, and the altitude was obtained by a ultra sonic sensor. Finally, the performance of the designed target tracking controller was evaluated through flight tests.

A Study on Improvement of Image Processing for Precision Inner Diameter Measurement of Circular Hole (원형구멍 정밀 내경측정을 위한 영상처리 개선에 관한 연구)

  • Park, ChangYong;Kweon, HyunKyu;Li, JingHua;Zhang, Hua Xin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.8-13
    • /
    • 2017
  • In this paper, the measurement of the inner diameter dimension of the circular hole by using a machine vision system was studied. This paper was focused on the theory and key technologies of machine vision inspection technology for the improvement of measurement accuracy and speed of the micro circular holes. A new method was proposed and was verified through the experiments on Gray conversion, binarization, edge extraction and Hough transform in machine vision system processes. Firstly, the Hough transform was proposed in order to improve the speed increase and implementation ease, it demonstrated the superiority of Hough transform and improvement through a comparative experiment. Secondly, we propose a calibration method of the system in order to obtain exactly the inner diameter of the circular hole. Finally, we demonstrate the reliability of the entire system as a MATLAB-based implementation of the GUI program, measuring the inner diameter of the circular hole through the circular holes of different dimensions measuring experiment.

  • PDF

Development of Error Compensation Algorithm for Image based Measurement System (미세부품 영상 측정시 진동에 의한 오차 보상 알고리즘 개발)

  • Pyo Chang Ryul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.102-108
    • /
    • 2004
  • In this paper, we studied a vibration problem that is critical and common to most precision measurement systems. For micro mechanical part measurements, results obtained from the vision-based precision measurement system may contain errors due to the vibration. In order to defeat this generic problem, for the current study, a PC based image processing technique was used first, to assess the effect of the vibration to the precision measurement and second, to develop an in-situ calibration algorithm that automatically compensate the measurement results in real time. We used a set of stereoscopic CCD cameras to acquire the images for the dimensional measurement and the reference measurement. The mapping function was obtained through the in-situ calibration to compensate the measurement results and the statistical analysis for the actual results is provided in the paper. Based on the current statistical study, it is expected to obtain high precision results for the micro measurement systems.

Vision-Based Haptic Interaction Method for Telemanipulation: Macro and Micro Applications (원격조작을 위한 영상정보 기반의 햅틱인터렉션 방법: 매크로 및 마이크로 시스템 응용)

  • Kim, Jung-Sik;Kim, Jung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1594-1599
    • /
    • 2008
  • Haptic rendering is a process that provides force feedback during interactions between a user and an object. This paper presents a haptic rendering technique for a telemanipulation system of deformable objects using image processing and physically based modeling techniques. The interaction forces between an instrument driven by a haptic device and a deformable object are inferred in real time based on a continuum mechanics model of the object, which consists of a boundary element model and ${\alpha}$ priori knowledge of the object's mechanical properties. Macro- and micro-scale experimental systems, equipped with a telemanipulation system and a commercial haptic display, were developed and tested using silicone (macro-scale) and zebrafish embryos (micro-scale). The experimental results showed the effectiveness of the algorithm in different scales: two experimental systems applied the same algorithm provided haptic feedback regardless of the system scale.

  • PDF