• Title/Summary/Keyword: Micro Surface Electrochemical Machining

Search Result 38, Processing Time 0.024 seconds

A Study of Micro Electrolytic-deburring for Nitinol (Nitinol 소재의 미세 전해디버링에 관한 연구)

  • Kim W.M.;Sin M.J.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.229-230
    • /
    • 2006
  • Shape memory alloy, Nitinol is used for medical stent, artificial human joint, antenna of artificial satellite, fire door, temperature sensor...etc. It is important for some nitinol product high precision and clean surface. In this study, we experiment about deburring of edge and surface of nitinol work piece with micro electrolytic-deburring. We made an observation in case electric currents are $1A{\sim}4A$, above 5A and each machining times.

  • PDF

Shape and Diameter Control of Microshafts in Electrochemical Process (전해 프로세스에 의한 미세축 가공시 형상 및 직경 제어)

  • Lim, Yung-Mo;Lim, Hyung-Jun;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.50-56
    • /
    • 2001
  • Fabrication methods are shown to produce slender and cylindrical tungsten shafts by electrochemical etching. The shape of microshatf formed by electrochemical etching is determined by the combination of two conflicting factors, i.e., initial shape and diffusion layer. We can obtain a desirable shaft profile by adjusting the thickness gradient of diffusion layer. The diameter of microshaft is controlled by mathematical model based on relation between process parameters and diameter.

  • PDF

Study on Electrochemical Polishing for Stainless Steel using Micro Pulse Current (미세 펄스전원을 이용한 스테인레스강의 전기화학연마)

  • 이동활;박정우;문영훈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.127-130
    • /
    • 2003
  • Electrolytic polishing is the anodic dissolution process in the transpassive state. It removes non-metallic inclusions and improves mechanical and corrosion resistance of stainless steel. Electrolytic polishing is normally used to remove a very thin layer of material from the surface of a metal object. An electrolyte of phosphoric, sulfuric and distilled water has been used in this study. In the low current density region, there can be found plateau region and material removal process and leveling process occur successively. In this study, an electrochemical polishing process using pulse current is adopted as a new electrochemical polishing process. In electrochemical machining processes, it has been found that pulse electrochemical processes provide an attractive alternative to the electrochemical processes using continuous current. Hence, this study will discuss the electrochemical polishing processes in low current density region and pulse electrochemical polishing.

  • PDF

Study on Electrochemical Polishing for Stainless Steel 300 Series using Micro Pulse Current (미세 펄스전원을 이용한 스테인레스강 300 계열의 전기화학연마)

  • 이동활;박정우;문영훈
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.388-393
    • /
    • 2003
  • Electrolytic polishing is the anodic dissolution process in the transpassive state. It removes non-metallic inclusions and improves mechanical and corrosion resistance of stainless steel. Electrolytic polishing is normally used to remove a very thin layer of material from the surface of a metal object. An electrolyte of phosphoric acid 50% in vol., sulfuric acid 20% in vol. and distilled water 30% in vol. has been used in this study. In the low current density region, there can be found plateau region and material removal process and leveling process occur successively. In this study, an electrochemical polishing process using pulse current is adopted as a new electrochemical polishing process. In electrochemical machining processes, it has been found that pulse electrochemical processes provide an attractive alternative to the electrochemical processes using continuous current. Hence, this study will discuss the electrochemical polishing processes in low current density region and pulse electrochemical polishing.

미세금형 가공을 위한 전기화학식각공정의 유한요소 해석 및 실험 결과 비교

  • Ryu, Heon-Yeol;Im, Hyeon-Seung;Jo, Si-Hyeong;Hwang, Byeong-Jun;Lee, Seong-Ho;Park, Jin-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.81.2-81.2
    • /
    • 2012
  • To fabricate a metal mold for injection molding, hot-embossing and imprinting process, mechanical machining, electro discharge machining (EDM), electrochemical machining (ECM), laser process and wet etching ($FeCl_3$ process) have been widely used. However it is hard to get precise structure with these processes. Electrochemical etching has been also employed to fabricate a micro structure in metal mold. A through mask electrochemical micro machining (TMEMM) is one of the electrochemical etching processes which can obtain finely precise structure. In this process, many parameters such as current density, process time, temperature of electrolyte and distance between electrodes should be controlled. Therefore, it is difficult to predict the result because it has low reliability and reproducibility. To improve it, we investigated this process numerically and experimentally. To search the relation between processing parameters and the results, we used finite element simulation and the commercial finite element method (FEM) software ANSYS was used to analyze the electric field. In this study, it was supposed that the anodic dissolution process is predicted depending on the current density which is one of major parameters with finite element method. In experiment, we used stainless steel (SS304) substrate with various sized square and circular array patterns as an anode and copper (Cu) plate as a cathode. A mixture of $H_2SO_4$, $H_3PO_4$ and DIW was used as an electrolyte. After electrochemical etching process, we compared the results of experiment and simulation. As a result, we got the current distribution in the electrolyte and line profile of current density of the patterns from simulation. And etching profile and surface morphologies were characterized by 3D-profiler(${\mu}$-surf, Nanofocus, Germany) and FE-SEM(S-4800, Hitachi, Japan) measurement. From comparison of these data, it was confirmed that current distribution and line profile of the patterns from simulation are similar to surface morphology and etching profile of the sample from the process, respectively. Then we concluded that current density is more concentrated at the edge of pattern and the depth of etched area is proportional to current density.

  • PDF

Analysis of residual stress of Nitinol by surface Polishing Method (표면 연마 방법에 따른 니티놀 잔류응력 분석)

  • Jeong, Ji-Seon;Hong, Kwang-Pyo;Kim, Woon-yong;Cho, Myeong-Woo
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.51-56
    • /
    • 2017
  • Nitinol, a shape memory alloy (SMA), is manufactured from titanium and nickel and it used in various fields such as electrical applications, micro sensors. It is also recommended as a material in medical for implant because it has excellent organic compatibility. Nitinol is intended to be inserted into the human body, products require a high-quality surface and low residual stress. To overcome this problems, explore electrolyte polishing (EP) is being explored that may be appropriate for use with nitinol. EP is a particularly useful machining method because, as a non contact machining method, it produces neither machining heat nor internal stress in the machined materials. Sandpaper polishing is also useful machining method because, as a contact machining method, it can easily good surface roughness in the machined materials. The electrolyte polishing (EP) process has an effect of improving the surface roughness as well as the film polishing process, but has a characteristic that the residual stress is hardly generated because the work hardened layer is not formed on the processed surface. The sandpaper polishing process has the effect of improving the surface roughness but the residual stress remains in the surface. We experimented with three conditions of polishing process. First condition is the conventional polishing. Second condition is the electrochemical polishing(EP). And Last condition is a mixing process with the conventional polishing and the EP. Surface roughness and residual stress of the nitinol before a polishing process were $0.474{\mu}mRa$, -45.38MPa. Surface roughness and residual stress of the nitinol after mixing process of the conventional polishing and the EP were $1.071{\mu}mRa$, -143.157MPa. Surface roughness and residual stress of the nitinol after conventional polishing were $0.385{\mu}mRa$ and -205.15MPa. Surface roughness and residual stress of sandpaper and EP nitinol were $1.071{\mu}mRa$, -143.157MPa. The result shows that the EP process is a residual stress free process that eliminates the residual stress on the surface while eliminating the deformed layer remaining on the surface through composite surface machining rather than single surface machining. The EP process can be used for biomaterials such as nitinol and be applied to polishing of wafers and various fields.

Fabrication of Microshafts using Electrochemical Process (전해 프로세스를 이용한 미세축 제작)

  • Lim, Young-Mo;Lim, Hyung-Jun;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.169-174
    • /
    • 2001
  • We proposed a new fabrication method using electrochemical process for microshafts. This method is a kind of atomic removal process by chemical reaction. Therefore, it is possible to make thin and long shafts regardless of the stiffness of materials. Because shaping process is simply switched to polishing process by varying process conditions, we can precisely fabricate microshafts with very smooth surface. We also fabricated a very thin shaft with the diameter as small as 10$\mu$m and a microshaft with high aspect ratio.

  • PDF

Study of Optimal Machining Conditions of Ultrasonic Machining By Taguchi's Method (다구찌 방법을 이용한 초음파 가공의 최적가공조건에 관한 연구)

  • Liu, Jun Wei;Jin, Jian;Ko, Tae Jo;Baek, Dae Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.213-218
    • /
    • 2013
  • Ultrasonic machining (USM) is a new method used in metal cutting. This process does not involve heating or any electrochemical effects, causes low surface damage, has small residual stress, and does not rely on the conductivity of the workpiece. These characteristics are suitable for the machining of brittle materials such as glass or ceramics. However, the use of USM for brittle materials generates cracks on the workpiece. Therefore, in this study, Taguchi's method was used to optimize the processing conditions of micro holes drilled in glass and ceramics. This method was used to successfully reduce the number of cracks at the entrance and the exit of the micro holes.