• Title/Summary/Keyword: Micro Screw

Search Result 60, Processing Time 0.033 seconds

Numerical Analysis and Experimental Study of Thread Rolling Process for Micro-sized Screws(Part II: Application to a Micro-screw with Diameter of 800㎛) (마이크로 체결부품 전조성형공정에 관한 해석 및 실험적 고찰(Part II: M0.8급 마이크로 스크류 전조공정 적용))

  • Song, J.H.;Lee, J.;Lee, H.J.;Lee, G.A.;Park, K.D.;Ra, S.W.;Lee, H.W.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.179-185
    • /
    • 2012
  • In this paper, it is proposed to produce high precision screws with a diameter of $800{\mu}m$ and a thread pitch of $200{\mu}m$ ($M0.8{\times}P0.2$) by means of a cold thread rolling process. In this part II of the study, the focus is on the production and reliability testing of the prototype $M0.8{\times}P0.2$ micro-screw. Designs for two flat dies were developed with the aid of the literature and previous studies. Process parameters during the cold thread rolling process were established through FE simulations. The simulation results showed that the threads of the micro-screw are completely formed through the rolling process. Prototype $M0.8{\times}P0.2$ micro-screw were fabricated with a high precision thread rolling machine. In order to verify the simulation results, the deformed shape and dimensions obtained from the experiment were compared with those from the simulations. Hardness and failure torque of the fabricated micro-screw were also measured. The values obtained indicate that the CAE based process design used in this paper is very appropriate for the thread rolling of micro-sized screws.

Simulation based Process Design of Flat Die Thread Rolling for Micro Screw (마이크로 스크류의 해석기반 판형 전조성형공정 연구)

  • Park, K.D.;Song, J.R.;Lee, H.J.;Lee, G.A.;Lee, N.K.;Lee, H.W.;Ra, S.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.62-65
    • /
    • 2009
  • There have been strong demands for micro size screw with high precision due to miniaturization and integration trends for electronic products such as Hard Disk Drives. The thread rolling process for screw manufacturing are lower unit cost, reduced material utilization, and superior mechanical properties compared to the machining process. But little work has been done on the thread rolling of micro size screw. In this paper, we investigate thread rolling process using Finite Element Analysis (FEA) and parameter study for screw manufacturing. And we also carried out compression tests to obtain the material property and to implement into the FE tool for the numerical simulation. In case that parameter of relative position oldies is half length of pitch for maintaining the continuous thread profiles, we found that shear friction factor was 0.9 during the thread rolling process using FEA. We are trying to develop the thread rolling process using the FE-simulation to manufacture screws which have been commonly produced from the industrial level fabrication at present.

  • PDF

A STUDY ON SURFACE OF VARIOUS ABUTMENT SCREWS

  • Park Chan-Ik;Chung Chae-Heon;Choi Han-Cheol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.351-359
    • /
    • 2003
  • Statement of problem: Regardless of any restoration, most of case, we used in screw connection between abutment and implant. For this reason, implant screw loosening has been remained problem in restorative practices. Purpose: The purpose of this study was to compare surface of coated/plated screw with titanium and gold alloy screw and to evaluate physical property of coated/plated material after scratch test in FESEM investigation Material and methods: GoldTite, titanium screw provided by 3i (Implant Innovation, USA) and TorqTite, titanium screw by Steri-Oss (Nobel Biocare, USA) and gold screw, titanium screw by AVANA (Osstem Implant, korea) - were selected for this study. Each abutment screw surface was observed at 100 times, and then screw crest, root, and slope were done more detailed numerical value, at 1000 times with FESEM. A micro-diamond needle was also prepared for the scratch test. Each abutment screw was fixed, micro-diamond scratch the surface of head region was made at constant load and then was observed central region and periphery of fine trace through 1000 times with FESEM. Results: The surface of GoldTite was smoother than that of other kinds of screw and had abundant ductility and malleability compared with titanium and gold screw. The scratch test also showed that teflon particles were exfoliated easily in screw coated with teflon. Titanium screw had a rough surface and low ductility. Conclusion: It was recommended that the clinical use of gold-plated screw would prevent a screw from loosening. CLINICAL IMPLICATIONS Clinical use of gold-plated screw would prevent a screw from loosening because it had abundant ductility and malleability compared with titanium and gold screw.

Study of Production and Material Properties of Micro Screw Using SWCH18A and SUS XM7 Materials (SWCH18A 와 SUS XM7 을 적용한 초소형 나사제작 및 물성분석에 관한 연구)

  • Ra, Seung-Woo;Kim, In-Rak;Hwang, Sung Tack
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.1043-1048
    • /
    • 2014
  • As micro screws feature reduced screw lengths and pitches, the resulting clamping force diminishes because of the reduced length of the actual joints. The elements of the clamping force are material, geometry, and friction. We studied the shrinking size of the screw and the methods to improve the clamping force by changing the material. We developed a micro screw using SWCH18A and SUS XM7 materials, and obtained the precision and thickness of the pitch through three-dimensional measurement. We also measured the external resistance of the micro screw by applying the Vicker's hardness test and conducted a break surface analysis using a break torque test and SEM for obtaining the break characteristics.

Characteristics of floating couplings of ball screw for high precision feeding system (고정밀 이송을 위한 볼스크류용 체결기구의 특성에 관한 연구)

  • 김인찬;박천홍;정윤교;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.610-614
    • /
    • 1996
  • As the run out error and misalignment of ball screw connected directly to guide table largely affect the motion accuracy of guideway, floating coupling that releases the table from screw nut except feed and rotational direction is needed todecrease its influences. The purpose of this study is to propose a practical model floating coupling of ball serew for high precision feeding system. The straightness, dynanic characteristics and micro step response of hydrostatic guideway, mounted with three types of coupling fixed type, leaf spring type and hydrostatic type, are tested and compared. From the resuts of experiments, it is proved that a hydrostatic type floating coupling is superior to other couplings and is available to high precision feeding system with ball screw.

  • PDF

An Investigation of Thread Rolling Characteristics of Titanium Micro-Screws according to Die Design Parameters (금형설계 변수에 따른 마이크로 티타늄 나사 전조공정의 성형 특성 고찰)

  • Lee, Ji Eun;Kim, Jong-Bong;Park, Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.89-94
    • /
    • 2017
  • Micro-screws can be defined by their outer diameter of generally less than 1 mm. They are manufactured by head forging and thread rolling processes. In this study, the thread rolling process was numerically analyzed for a micro-screw with a diameter and pitch of 0.8 and 0.2 mm, respectively. Through finite element (FE) analysis, the effects of two design parameters (die gap and chamfer height) on the dimensional accuracy were investigated. Three combinations of chamfer heights were chosen first and the corresponding die gap candidates selected by geometric calculation. FE analyses were performed for each combination and their results indicated that the concave chamfer height should be less than 0.3 mm, while a 10 ?m difference in the die gap might cause degeneration in dimensional accuracy. These results conclude that ultra-high accuracy is required in die fabrication and assemblies to ensure dimensional accuracy in micro-screw manufacturing.

Time efficiency and operator convenience of using a micro-screw in image registration for guided implant surgery (마이크로스크류가 가이드 임플란트 수술을 위한 영상정합 과정에서 작업시간과 술자편의성에 미치는 영향)

  • Mai, Hai Yen;Lee, Du-Hyeong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.3
    • /
    • pp.219-224
    • /
    • 2019
  • Purpose: The image registration of radiographic image and digital surface data is essential in the computer-guided implant guide system. The purpose of this study was to examine the effects of using micro-screw on the working time and convenience of operators in the process of image matching for guided implant surgery. Materials and methods: A mandibular dental model was prepared in partial edentulism for Kennedy class I classification. Two micro-screws were placed on the each side of retromolar area. Radiographic and scan images were taken using computed-tomography and digital scanning. The images were superimposed by 12 operators in software in two different conditions: using remaining teeth image alone and using teeth and micro-screws images. Working time, operator convenience and satisfaction were obtained, and analyzed using the Mann-Whitney U test (${\alpha}=.05$). Results: The working time was not statistically different between image registration conditions (P>.05); however, operator convenience and satisfaction were higher in the teeth and micro-screw assisted condition than in the teeth-alone assisted condition (P<.001). Conclusion: The use of micro-screw for the image registration has no effect in working time reduction, but improves operator convenience and satisfaction.

The Development of Micro NCT for Micro Blanking/Punching of Thin Plates (미세박판가공을 위한 마이크로 NCT 제작에 관한 연구)

  • 홍남표;신용승;최근형;김병희;장인배;김헌영;오수익
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1084-1087
    • /
    • 1997
  • In this paper, we developed the micro NCT system for punching the thin plates, which is driven is driven by the standalone type microprocessor. In order to adjust the alignment between the punch and die in-situ punching procedures, the non-contact type laser sensor for measuring the burr and micro-driving system for punching die with using the differential screw are developed. The height of burr in four directions in the punched hole of test specimen are measured, and the measured data are transferred to the personal computer by RS232C serial communication technology. In the personal computer, by using the graphic user interface type monitoring program and data handling procedures which includes the filtering algorithms, the direction and length of movement of the die position is decided and these data are transferred back to the microprocessor. The microprocessor drives the micro positioning stage based on these data. Even if this method is not a perfect solution for the in-situ alignment in micro punching, but this alignment methodology is accomplished in the same stage just after the punching that we hope to solve the alignment problem in the punching system based on this technology.

  • PDF