• Title/Summary/Keyword: Micro Pump

Search Result 186, Processing Time 0.023 seconds

Development of a Hydraulic Level Control System for High-speed Rice Transplanting Machines (고속 이앙기의 유압 수평 제어 장치 개발에 관한 연구)

  • 정연근;정병학;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.27 no.2
    • /
    • pp.79-88
    • /
    • 2002
  • This study was conducted to develop system for high speed rice transplanting machines. The control system includes a sensor detecting the tilt angle of the seedling bed, a micro-controller and a hydraulic system consisting of a double acting cylinder, a four-way three-position solenoid valve, a relief valve and a hydraulic pump. The levelling system shared the pump with the existing steering control, resulting in a tandem center circuit for the steering and levelling control systems. Using the input signal from the sensor, the micro-controller determined and generated the output signal to control the cylinder through the solenoid valve to keep the seedling bed always parallel to the water surface regardless of soil unevenness during the transplanting operations. Both an ON/OFF and a PWM control schemes were tested. When the flow rate was more than 1 ι/min in the ON/OFF control, the system showed unstable rolling. However, in the PWM control, the system worked stably although the flow rate was more than 1 ι/min. The PWM control showed a better performance when a large difference between the angle and the dead band of the control system occurred. The characteristics of tile system response to given tilt angles were predicted by a computer simulation. Both the ON/OFF and the PWM control systems worked well providing that the operating and waiting times were properly adjusted.

PIV Measurements of the Pressure Driven Flow Inside a T-Shaped Microchannel Junction (T헝 마이크로채널 연결부 압력구동 유동의 PIV계측)

  • Choi Jayho;Lee In-Seop
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.1
    • /
    • pp.75-81
    • /
    • 2003
  • A custom micro-PIV optics assembly has been used to measure the flow fold inside a T-junction of a microchannel. The micro-PIV system consists of microscope objectives of various magnifications, a dichroic cube, and an 8-bit CCD camera. Fluorescent particles of diameters 620 nm have been used with a Nd:YAG laser and color filters. A programmable syringe pump with Teflon tubings were used to inject particle-seeded distilled water into the channel at flow rates of 2.0, 4.0, 6.0 mL/hr. The micro-channels are fabricated with PDMS with a silicon mold, then O$_{2}$ -ion bonded onto a slide glass. Results show differences in flow characteristics and resolution according to fluid injection rates, and magnifications, respectively. The results include PIV data with vector-to-vector distances of 2 $\mu$m with 32 pixel-square interrogation windows at 50$\%$ overlap.

  • PDF

Analysis on Actuation Mechanism of Micro Actuator by Bubble Formation (기포형성에 의한 마이크로 액추에이터의 구동기구 해석)

  • 오시덕;승삼선;곽호영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.418-426
    • /
    • 1995
  • A bubble-powered microactuator is designed conceptually. And the actuation mechanism due to bubble growth and collapse is studied numerically and analytically. In this analysis, it is estimated that the time lag for bubble formation on micro line heater, the duration of the bubble growth and collapse and the pressure change in actuator due to the bubble evolution. Based on these calculations, the actuator control scheme is visualized. This actuator may be applicable to the system which needs to pump liquid correctly and regularly.

SIMULATION OF A MICROPUMP WITH STEP ELECTRODES (계단 모양 전극을 가진 미세펌프 해석)

  • Kim, Byoung-Jae;Lee, Seung-Hyun;Sung, Hyung-Jin
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.40-45
    • /
    • 2010
  • The flow rate is higher in ACEO micro-pumps with step electrodes than in micro-pumps with planar asymmetric electrodes. In the present study, numerical simulations were made of a ACEO micro-pump with step electrodes to investigate the effects of electrode design parameters on the pumping flow rate. The electrical charge at the electrodes, the fluid flow, and potential were solved, taking into account the finite size of ions, that is, the steric effect. This effect is recognized to be capable of quantifying the electrical charge more accurately in the electrical double layer subject to high voltages. Geometrical parameters such as heights, widths, and gaps of three-dimensional electrodes were optimized to enhance the pumping flow rate. Moreover, the effect of amplitude and frequency of AC was studied.

Numerical Analysis on Thermal Transpiration Flows for a Micro Pump (열천이 현상을 이용한 마이크로 펌프내의 희박기체유동 해석)

  • Heo, Joong-Sik;Lee, Jong-Chul;Hwang, Young-Kyu;Kim, Youn-J.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.5
    • /
    • pp.27-33
    • /
    • 2007
  • Rarefied gas flows through two-dimensional micro channels are studied numerically for the performance optimization of a nanomembrane-based Knudsen compressor. The effects of the wall temperature distributions on the thermal transpiration flow patterns are examined. The flow has a pumping effect, and the mass flow rates through the channel are calculated. The results show that a steady one-way flow is induced for a wide range of the Knudsen number. The DSMC(direct simulation Monte Carlo) method with VHS(variable hard sphere) model and NTC(no time counter) techniques has been applied in this work to obtain numerical solutions. A critical element that drives Knudsen compressor Is the thermal transpiration membrane. The membranes are based on aerosol or machined aerogel. The aerogel is modeled as a single micro flow channel.

Design and Analysis of IPMC Actuator-driven ZNMF Pump for Air Flow Control of MAV's Wing (IPMC 작동기로 구동되는 초소형 비행체 날개의 공기흐름 조절용 ZNMF(zero-net-mass-flux) 펌프의 예비설계 및 해석)

  • Lee, Sang-Gi;Kim, Gwang-Jin;Park, Hun-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.22-30
    • /
    • 2006
  • In this paper, a systematic design method on an IPMC(ionic polymer-metal composite)-driven ZNMF(zero-net-mass-flux) pump is introduced for the flow control of an MAV's (micro air vehicle) wing. Since the IPMC is able to generate a large deformation under a low input voltage along with its ability to operate in air, and is easier to be manufactured in a small size, it is considered to be an ideal material of the actuating diaphragm. Through the numerical methods, an optimal shape of the IPMC diaphragm was found for maximizing the stroke volume. Based on the optimal IPMC diaphragm, a proto-type ZNMF pump with a slot, was designed. By using the flight speed of the MAV considered in this work, the driving frequencies(~ 40 Hz) of IPMC diaphragm, and the flow velocity through the pump's slot, the calculated non-dimensional frequency and the momentum coefficient ensure the feasibility of the designed ZNMF pump as a flow control device.

CFD Analysis on the Flow Characteristics of Diffuser/Nozzles for Micro-pumps (마이크로 펌프용 디퓨져/노즐의 유동 특성에 관한 CFD 해석)

  • Kim Donghwan;Han Dong-Seok;Jeong Siyoung;Hur Nahmkeon;Yoon Seok-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.544-551
    • /
    • 2005
  • The flow characteristics have been numerically investigated for various shapes of the diffuser/nozzles which are used for a valveless micro-pump. The important parameters considered in this study are the throat width ($15\~120\mu$m), the taper angle ($3.15\~25.2^{\circ}$), and the diffuser length ( $600\~4,800\mu$m), and the size of the middle chamber ($1\~16mm^2$). To find the optimal values for these parameters, steady state calculations have been performed assuming the constant pressure difference between the inlet and exit of the flow For the taper angle and the throat width, it is found that there exists an optimum at which the net flow rate is the greatest. The optimal taper angle is in the range of $10\~20^{\circ}$ for all the pressure differences; and the throat width indicates an optimal value near $75\mu$m for the case of 35 kPa pressure difference. The net flow rate is also influenced by the size of the middle chamber. With decreasing chamber size, the net flow rate is reduced because of the interference between two streams flowing into the middle chamber. The unsteady pulsating flow characteristics for a micro-pump with a given diffuser/nozzle shape have been also investigated to show the validity of the steady state parametric study.

Development of a constant pressure feed system using a constant pressure proportional control mode (정압비례제어방식을 적용한 정압급수장치의 개발)

  • 김주명;김광열;이건기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.1026-1031
    • /
    • 2003
  • Automatic feed pumps are operated and stopped by a pressure switch. Thus, because of repeated operations and stops of the pumps according to fluctuations of water volume, operation with constant rate and pressure is impossible. Moreover, because of repeated running of the pump, keeping up of constant pressure is impossible and damage and energy loss are weak points of the pimps. To make up for defects of an automatic feed pump, this paper designed and made a static pressure feed system which was composed of a feed water control valve, a flow sensor and a control system. The valve device plays an important part in reducing load of pumps by constant water supply regardless of outflow of water. Outflow of water is determined by infrared diode of the flow sensor. The control system is made of a 8 bit micro-processor and the pump was controled by a specific control algorithm. With the constant pressure feed system, discharge pressure was kept at fixed pressure, accurate operations and stops were smoothly accomplished and the pump was operated with constant pressure. Thus, the constant pressure feed system can be considered as an advanced system which made up for the weak points in the current automatic feed systems.

Experimental study on characteristics of evaporation heat transfer of $CO_2$ in horizontal micro-channel tube (수평 다채널관 내 이산화탄소의 증발 열전달 특성에 관한 실험적 연구)

  • Lee, Sang-Jae;Kim, Dae-Hoon;Choi, Jun-Young;Lee, Jae-Heon;Kwon, Young-Chul
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2200-2205
    • /
    • 2007
  • In order to investigate the variation on a heat transfer coefficient during evaporation of $CO_2$, basic experiment on the evaporation heat transfer characteristics in a horizontal micro-channel tube was performed. Hydraulic diameters of micro-channels were 0.68 and 1.46 mm. The experiment apparatus consisted of a test section, a DC power supply, a heater, a chiller, a mass flow meter, a pump and a measurement system. Experiments were conducted for various mass fluxes of 300 to 800 kg/$m^2s$, heat fluxes of 10 to 40 kW/$m^2$ and saturation temperatures of -5 to 5$^{\circ}C$. With the increase heat flux, the evaporation heat transfer coefficient increased. And the significantly change of the heat transfer coefficient was observed at any heat flux and mass flux. As the saturation temperature increased and the hydraulic diameter decreased, the heat transfer coefficient increased.

  • PDF

Quantitative Visualization of Oxygen Transfer in Micro-channel using Micro-LIF Technique (마이크로 레이저 형광 여기법을 이용한 미세채널 내부에서의 산소 확산에 대한 정량적 가시화)

  • Chen, Juan;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.34-39
    • /
    • 2012
  • In the present study, oxygen transfer process across gas-liquid interface in a Y-shape micro-channel is quantitatively visualized using the micro laser induced fluorescence (${\mu}$-LIF) technique. Diffusion coefficient of Oxygen ($D_L$) is estimated based on the experimental results and compared to its theoretical value. Tris ruthenium (II) chloride hexahydrate was used as the oxygen quenchable fluorescent dye. A light-emitting diode (LED) with wavelength of 450 nm was used as the light source and phosphorescence images of fluorescent dye were captured by a CMOS high speed camera installed on the microscope system. Water having dissolved oxygen (DO) value of 0% and pure oxygen gas were injected into the Y-shaped microchannel by using a double loading syringe pump. In-situ pixel-by-pixel calibration was carried out to obtain Stern-Volmer plots over whole flow field. Instantaneous DO concentration fields were successfully mapped according to Stern-Volmer plots and DL was calculated as $2.0675{\times}10^{-9}\;m^2/s$.