• Title/Summary/Keyword: Micro Pore

Search Result 339, Processing Time 0.023 seconds

A Study on the Diffusion of Ions in Hardened Blended Cement (혼합시멘트 경화체에서의 이온확산에 관한 연구)

  • 방완근;이승헌;김창은
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.3
    • /
    • pp.260-265
    • /
    • 1999
  • 보통 포틀랜드 시멘트와 플라이애쉬, 슬래그를 혼합한 혼합시멘트 경화체를 이용하여 이온 확산에 미치는 혼합재의 영향과 양이온 공존시 염소이온의 확산에 대하여 고찰하였다. 겉보기 이온확산계수가 보통 포틀랜드의 시멘트보다 플라이애쉬와 슬래그를 혼합한 시멘트 경화체가 약 10-3배로 매우 낮은 값을 나타내었다. 이것은 포졸란 반응에 의해 많은 CSH 수화물이 capillary pore에 형성되어 macro pore가 감소되고 micro pore가 증가되어 이온 확산에 대한 저항이 커졌기 때문이다. 또한, Mg2+이온 공존시에 염소이온의 확산은 증가되었다.

  • PDF

Enzymatic hydrolysis and micro-structure of ozone treated wood meal (오존 처리에 의한 목재 세포벽의 미세구조변화와 효소가수분해)

  • Kim, Kang-Jae;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.3
    • /
    • pp.67-73
    • /
    • 2010
  • Pine (Pinus densiflora) and aspen (Populus euramericana) wood meals were treated with ozone at various time schedule in acidic condition. The lignin contents and surface area of the ozone treated wood meals were determined and the enzymatic hydrolysis rate of ozonated wood meals was evaluated. The feasibility of enzymatic hydrolysis of the ozone treated wood meal was obviously influenced with the degree of delignification. After ozone treatment of wood meal for 10min, total pore volume were slightly increased in the surface of wood meal. When wood meals were treated with ozone longer than 10min, few change in the pore volume was observed. However, the area of over $50{\AA}$ of pore size is increased with ozonation time. As a conclusion, the rate of enzymatic hydrolysis of wood is more effective with the pore size distribution than the total pore volume.

Fabrication and Pore Characteristics of Cu Foam by Slurry Coating Process

  • Park, Dahee;Jung, Eun-Mi;Yang, Sangsun;Yun, Jung-Yeul
    • Journal of Powder Materials
    • /
    • v.22 no.2
    • /
    • pp.87-92
    • /
    • 2015
  • Metallic porous materials have many interesting combinations of physical and geometrical properties with very low specific weight or high gas permeability. In this study, highly porous Cu foam is successfully fabricated by a slurry coating process. The Cu foam is fabricated specifically by changing the coating amount and the type of polyurethane foam used as a template. The processing parameters and pore characteristics are observed to identify the key parameters of the slurry coating process and the optimized morphological properties of the Cu foam. The pore characteristics of Cu foam are investigated by scanning electron micrographs and micro-CT analyzer, and air permeability of the Cu foam is measured by capillary flow porometer. We confirmed that the characteristics of Cu foam can be easily controlled in the slurry coating process by changing the microstructure, porosity, pore size, strut thickness, and the cell size. It can be considered that the fabricated Cu foams show tremendous promise for industrial application.

Development of bone scaffold using HA(Hydroxyapatite) nano powder (HA(Hydroxyapatite) 나노 입자를 이용한 bone scaffold의 개발)

  • Kim J.Y.;Lee S.J.;Lee J.W.;Kim Shin-Yoon;Cho D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.159-160
    • /
    • 2006
  • A novel approach to the manufacture of biocompatible ceramic scaffold for tissue engineering using micro-stereolithography system is introduced. Micro-stereolithography is a newly proposed technology that enables to make a 3D micro structure. The 3D micro structures made by this technology can have accurate and complex shape within a few micron error. Therefore, the application based on this technology can vary greatly in nano-bio fields. Recently, tissue-engineering techniques have been regarded as alternative candidate to treat patients with serious bone defects. So many techniques to design and fabricate 3D scaffolds have been developed. But the imperfection of scaffold such as random pore size and porosity causes a limitation in developing optimum scaffold. So scaffold development with controllable pore size and fully interconnected shape have been needed for a more progress in tissue engineering. In this paper, bone scaffold was developed by applying the micro-stereolithography to the mold technology. The scaffold material used was HA(Hydroxyapatite) nano powder. HA is a type of calcium phosphate ceramic with similar characteristic to human inorganic bone component. The bone scaffold made by HA is expected, in the near future, to be an efficient therapy for bone defect.

  • PDF

Smoothing Effect in X-ray Microtomogram and Its Influence on the Physical Property Estimation of Rocks (X선 토모그램의 Smoothing 효과가 암석의 물성 예측에 미치는 영향 분석)

  • Lee, Min-Hui;Keehm, Young-Seuk
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.347-354
    • /
    • 2009
  • Physical properties of rocks are strongly dependant on details of pore micro-structures, which can be used for quantifying relations between physical properties of rocks through pore-scale simulation techniques. Recently, high-resolution scan techniques, such as X-ray microtomography and high performance computers make it possible to calculate permeability from pore micro-structures of rocks. We try to extend this simulation methodology to velocity and electrical conductivity. However, the smoothing effect during tomographic inversion creates artifacts in pore micro-structures and causes inaccurate property estimation. To mitigate this artifact, we tried to use sharpening filter and neural network classification techniques. Both methods gave noticeable improvement in pore structure imaging and accurate estimation of permeability and electrical conductivity, which implies that our method effectively removes the smoothing effect in pore structures. However, the calculated velocities showed only incremental improvement. By comparison between thin section images and tomogram, we found that our resolution is not high enough, and it is mainly responsible for the inaccuracy in velocity despite the successful removal of the smoothing effect. In conclusion, our methods can be very useful for pore-scale modeling, since it can create accurate pore structure without the smoothing effect. For accurate velocity estimation, the resolution of pore structure should be at least three times higher than that for permeability simulation.

Prediction of Mechanical Response of 3D Printed Concrete according to Pore Distribution using Micro CT Images (마이크로 CT 이미지를 활용한 3D 프린팅 콘크리트의 공극 분포에 따른 인장파괴의 거동 예측)

  • Yoo, Chan Ho;Kim, Ji-Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.141-147
    • /
    • 2024
  • In this study, micro CT images were used to confirm the tensile fracture strength according to the pore distribution characteristics of 3D printed concrete. Unlike general specimens, concrete structures printed by 3D printing techniques have the direction of pores (voids) depending on the stacking direction and the presence of filaments contact surfaces. Accordingly, the pore distribution of 3D printed concrete specimens was analyzed through quantitative and qualitative methods, and the tensile strength by direction was analyzed through a finite element technique. It was confirmed that the pores inside the 3D printed specimen had directionality, resulting in their anisotropic behavior. This study aims to analyze the characteristics of 3D concrete printing specimen and correlate them with simulation-based mechanical properties to improve performance of 3D printed material and structure.

A study on selective hybrid-structure film fabricated by 355nm UV-pulsed laser processing (355nm UV 레이저를 이용한 선택적 하이브리드 구조 필름의 제작에 관한 연구)

  • Kim, Myung-Ju;Lee, Sang-Jun;Shin, Bo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.2979-2984
    • /
    • 2015
  • This paper has presented a new foaming technology of selective hybrid-structured polymer film with expanded pores. The porous structure of closed pore was firstly fabricated by applying the 355nm UV-pulsed laser to 0.1mm thick film that was uniformly mixed with PP pellets, copper powder, and CBA (Chemical Blowing Agent). In order to expand pore size of closed-cell shape, LAMO(Laser Aided Micro pore Opening) processing was conducted to heat the copper powder, and then the bigger pore size of closed-cell more than existing pore size was successfully formed because of rapid conduction of heated metal powder. From the experimental results, various process parameters such as laser fluence, intensity, scan rate, spot size and density of powder and CBA were considerably considered to reveal the correlation among the pore characteristics. In the future, a function experiment will be carried out to use the hybrid film of industrial applications.

Preparation and Characterization of Metal-containing Activated Carbon Derived from Phenolic Resin

  • Oh, Won-Chun
    • Carbon letters
    • /
    • v.4 no.2
    • /
    • pp.86-92
    • /
    • 2003
  • A series of micro- and mesoporous activated carbons were prepared from two kinds of phenolic resin using a metal treated chemical activation methodology. $N_2$-adsorption data were used to characterize the surface properties of the produced activated carbons. Results of the surface properties and pore distribution analysis showed that phenolic resin can be successfully converted to micro- and mesoporous activated carbons with specific surface areas higher than 973 $m^2/g$. Activated carbons with porous structure were produced by controlling the amount of metal chlorides ($CuCl_2$). Pore evolvement depends on the amount of additional metal chloride and precursors used. From the SEM and EDX data, copper contents were shown to be most effected by the incremental addition of metal chloride.

  • PDF

A Study on the Noise Performance of Silencer Fused with Hole-Cavity Resonance Technology and Micro-Sphere Stainless Chip Sintering Technology (Hole-Cavity 공명기술과 미세공 스테인레스칩 소결 융합 소음기의 소음성능에 관한 연구)

  • Cho, Dong-Hyun;BacK, Nam-Do
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.101-108
    • /
    • 2019
  • In this study, the hole-cavity resonance technology and the micro pore stainless chip sintering technology were fused to develop silencers with excellent noise attenuation performance even at fluid pressures exceeding 30 bar for the first time at home and abroad. As a result of this study, the noise attenuation performance was greatly improved as reflection, loss, and resonance were made to occur thousands of times simultaneously when fluids pass through the sintered micro pore stainless steel chip sound absorber. The noise of the gas emitted from the bomb without the silencer was shown to be 125dB. And noise test conducted after installation of the silencer showed the noise of 67dB. Given the study results, the amount of noise was greatly reduced in the sintered silencer.

Effect of the Pore Structure of Concrete on the Compressive Strength of Concrete and Chloride Ions Diffusivity into the Concrete

  • Kim, Jin-Cheol;Paeng, Woo-Seon;Moon, Han-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.345-351
    • /
    • 2003
  • The transport characteristics of deleterious ions such as chlorides depend on the pore structures of concrete and are the major factors in the durability of concrete structures in subjected to chloride attack such as in marine environments. In this paper, the effect of the pore structure on compressive strength and chloride diffusivity of concrete was investigated. Six types of concretes were tested. The pore volume of concrete containing mineral admixtures increased in the range of 3∼30nm due to micro filling effect of hydrates of the mineral admixtures. There was a good correlation between the median pore diameter, the pore volume above 50nm and compressive strength of concrete, but there was not a significant correlation between the total pore volume and compressive strength. The relationship between compressive strength and chloride diffusivity were not well correlated, however, pore volume above 50nm were closely related to the chloride diffusion coefficient.