• 제목/요약/키워드: Micro Polishing

검색결과 182건 처리시간 0.037초

W CMP 공정에서의 연마패드표면 안정화 상태와 그 개선 (Stability and Improvement of Polishing Pad in W CMP)

  • 박재홍;키노시타 마사하루;요시다 코이치;신이치 마츠무라;정해도
    • 한국전기전자재료학회논문지
    • /
    • 제20권12호
    • /
    • pp.1027-1033
    • /
    • 2007
  • In this research, the polishing pad for W CMP has been analyzed to understand stabilization of polishing performance. For stabilization of process, the polishing pad condition is one of important factors. The polishing pad plays a key role in polishing process, because it contact with reacted surface of wafer[1]. The physical property of pad surface is ruled by conditioning tool which makes roughness and profile of pad surface. Pad surface affects on polishing performance such as RR(Removal Rate) and uniformity in CMP. The stabilized pad surface has stable roughness. And its surface has high level of wettability which can increase the probability of abrasive adhesion on pad. The result of this research is that the reduction of break-in and dummy polishing process were achieved by artificial machining to make stable pad surface. In this research, urethane polishing pad which is named IC pad(Nitta-Haas Inc.) and has micro pore structure, is studied. Because, this type of pad is the most conventional type.

마이크로 구조를 가진 패드를 이용한 MEMS CMP 적용에 관한 연구 (A study on the application of MEMS CMP with Micro-structure pad)

  • 박성민;정석훈;정문기;박범영;정해도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.481-482
    • /
    • 2006
  • Chemical-mechanical polishing, the dominant technology for LSI planarization, is trending to play an important function in micro-electro mechanical systems (MEMS). However, MEMS CMP process has a couple of different characteristics in comparison to LSI device CMP since the feature size of MEMS is bigger than that of LSI devices. Preliminary CMP tests are performed to understand material removal rate (MRR) with blanket wafer under a couple of polishing pressure and velocity. Based on the blanket CMP data, this paper focuses on the consumable approach to enhance MEMS CMP by the adjustment of slurry and pad. As a mechanical tool, newly developed microstructured (MS) pad is applied to compare with conventional pad (IC 1400-k Nitta-Haas), which is fabricated by micro melding method of polyurethane. To understand the CMP characteristics in real time, in-situ friction force monitoring system was used. Finally, the topography change of poly-si MEMS structures is compared according to the pattern density, size and shape as polishing time goes on.

  • PDF

자기유변유체 연마공정을 응용한 미세부품의 형상가공 (Farbrication of Repeated 3D Shapes using Magnetorheological Fluid Polishing)

  • 김용재;민병권;이상조;석종원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1265-1268
    • /
    • 2005
  • Due to the increase of the need for reliable high density information storage devices, the demand for precise machining of the slider in HDD is rapidly growing. The present fabrication process of slider bears some serious problems such as low yield ratio in mass production, which is mainly caused by inefficient machining processes in shaping camber and crown on the slider. In order to increase slider yield ratio in HDD, a new systematic machining process is proposed and developed in this work. This new machining process includes the use of magnetorheological (MR) fluid, a smart polishing material generally used for ultra-fine surface finishing of micro structures. It is shown that the process proposed in this work enables to make camber and crown pattern in the scale of few tens of nanometers. Experiment results shows that the MR polishing can be also used for shaping process of micro structures.

  • PDF

Effect of Pressure on Edge Delamination in Chemical Mechanical Polishing of SU-8 Film on Silicon Wafer

  • Park, Sunjoon;Im, Seokyeon;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • 제33권6호
    • /
    • pp.282-287
    • /
    • 2017
  • SU-8 is an epoxy-type photoresist widely used for the fabrication of high-aspect-ratio (HAR) micro-structures in micro-electro-mechanical systems (MEMS). To fabricate highly integrated structures, chemical mechanical polishing (CMP) has emerged as the preferred manufacturing process for planarizing the MEMS structure. In SU-8 CMP, an oxidizer decomposes organic impurities and particles in the CMP slurry remove the chemically reacted surface of SU-8. To fabricate HAR microstructures using the CMP process, the adhesion between SU-8 and substrate material is important to avoid the delamination of the SU-8 film caused by the mechanical-dominant material removal characteristic. In this study, the friction force during the CMP process is measured with a CMP monitoring system to detect the delamination phenomenon and investigate the delamination of the SU-8 film from the silicon substrate under various pressure conditions. The increase in applied pressure causes an increase in the frictional force and wafer-edge stress concentration. The frictional force measurement shows that the friction force changes according to the delamination phenomenon of the SU-8 film, and that it is possible to monitor the delamination phenomenon during the SU-8 CMP process. The delamination at a high applied pressure is explained by the effect of stress distribution and pad deformation. Consequently, it is necessary to control the pressure of polishing, which can avoid the delamination in SU-8 CMP.

스테인레스 강의 경면가공을 위한 효율적 수퍼피니싱 조건의 결정 (Determination of Efficient Superfinishing Conditions for Mirror Surface Finishing of Stainless Steel)

  • 김상규;조영태;정윤교
    • 한국기계가공학회지
    • /
    • 제12권2호
    • /
    • pp.100-106
    • /
    • 2013
  • Stainless steel has some excellent properties as the material for the mechanical component. Purpose of this study is carried out to obtain mirror surface on the surperfinishing of stainless steel with high efficiency. To achieve this, we have conducted a series of polishing experiment for stainless steel using abrasive film from the perspective of oscillation speed, the rotational speed of workpiece, contact roller hardness, contact pressure and feed rate. Abrasive film used this study is a micro-finishing film and a lapping film. Furthermore, the polishing characteristics and efficiency of stainless steel is discussed through measuring optimal polishing time and surface roughness. From the obtained results, it was confirmed that efficient superfinishing conditions and polishing characteristic of Stainless steel can be determined.

레이저 직접 묘화법에 의한 알루미나 기판위의 미세 전도성 패턴 제작 (The fabrication of micro- size conductor lines on alumina patterned by laser ablation)

  • 김혜원;이제훈;신동식;강성군
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1889-1892
    • /
    • 2003
  • The fabrication of micro-size patterning on alumina substrate is generated by laser direct writing, which has high precision and selectivity of various laser beam energies. The depth and width of patterns is affected by laser parameter such as laser power, scan rate. Through the chemical and mechanical polishing Pd seeds was effectively got rid of alumina substrate for selectivity electroless Ni plating. Thermal treatment is good method for changing electrical property of conductor line, because the treatment can control of the grain size.

  • PDF

전해-자기 복합 가공을 이용한 마이크로 채널 디버링공정 최적화 (A Study on the Optimization of Deburring Process for the Micro Channel using EP-MAP Hybrid Process)

  • 이성호;곽재섭
    • 한국생산제조학회지
    • /
    • 제22권2호
    • /
    • pp.298-303
    • /
    • 2013
  • Magnetic abrasive polishing is one of the most promising finishing methods applicable to complex surfaces. Nevertheless this process has a low efficiency when applied to very hardened materials. For this reason, EP-MAP hybrid process was developed. EP-MAP process is expected to machine complex and hardened materials. In this research, deburring process using EP-MAP hybrid process was proposed. EP-MAP deburring process is applied to micro channel, thereby it can obtain both deburring process and polishing process. EP-MAP deburring process on the micro channel was performed. Through design of experiment method, error of height in this process according to process parameter is analyzed. When the level 1 parameter A(magnetic flux density) and level 2 parameter B(electric potential), C(working gap) and level 3 parameter D(feed rate) are applied in the deburring process using EP-MAP hybrid process, it provides optimum result of EP-MAP hybrid deburring process.