• 제목/요약/키워드: Micro Pitting

검색결과 27건 처리시간 0.023초

Micro-droplet cell을 이용한 Fe-17Cr 합금의 공식 발생에 대한 연구 (A Study on the Initiation of Pitting Corrosion of Fe-17Cr Alloy Using Micro-Droplet Cell Technique)

  • 김재중;이재봉
    • 대한금속재료학회지
    • /
    • 제46권12호
    • /
    • pp.809-816
    • /
    • 2008
  • The influences of various parameters such as inclusions, surface roughness, exposed areas and chloride ion concentrations on the initiation of pitting of Fe-17Cr alloy were investigated, using micro-droplet cell technique. Micro-droplet cell allows one to align the micro-electrode to the desired spot of the working electrode and measure directly local currents with the potentiodynamic polarization. Micro electrochemical tests were carried out at the inclusions after EDX analysis of inclusion. EDX analysis identified inclusions as Cr-oxides. It was found that some active inclusions among Cr-oxide inclusions acted as initiation sites for pitting corrosion. In addition, the rougher surface and the denser chloride ion concentration offered easier pit initiation sites, causing the more susceptible to pitting corrosion.

마이크로 드로플릿 셀 기법과 임계공식온도 측정 기법을 이용한 적층가공 Ti-6Al-4V 합금의 내식성 평가 (Ti-6Al-4V Alloy Fabricated by Additive Manufacturing Method Using Micro-droplet Cell and Critical Pitting Temperature Techniques and Evaluation of its Resistance to Corrosion)

  • 서동일;이재봉
    • Corrosion Science and Technology
    • /
    • 제17권3호
    • /
    • pp.129-137
    • /
    • 2018
  • The resistance to corrosion of additive manufactured (3D printing) Ti-6Al-4V alloys was investigated using micro-electrochemical tests. In terms of corrosion resistance, the acicular martensitic ${\alpha}^{\prime}$ phase in such additive manufactured Ti-6Al-4V was the focus of attention, and its behavior was distinct from that of conventional subtractive manufactured Ti-6Al-4V. To order to identify ${\alpha}^{\prime}$ phase, XRD tests were performed and micro Vickers hardness was measured for different grains (bright and dark grains) in the additive manufactured Ti-6Al-4V alloy. Micro-electrochemical tests were performed to measure corrosion resistance of bright and dark grains in the additive manufactured Ti-6Al-4V alloy with specially designed electrochemical micro-droplet cell. Critical pitting temperature (CPT) measurement was performed to evaluate the resistance to pitting corrosion of additive manufactured Ti-6Al-4V alloys with different volumes of ${\alpha}^{\prime}$ phase and subtractive manufactured Ti-6Al-4V alloy. The dark grains of the laminated Ti-6Al-4V alloy distributed broader than the bright grains measured with low microhardness. The dark grains of the Ti-6Al-4V alloy, which was rich in martensite ${\alpha}^{\prime}$, had lower general corrosion and pitting resistance than bright grains. As the fraction of martensite ${\alpha}^{\prime}$ phase increased, the resistance to the pitting corrosion decreased.

NaCl과 NaBr수용액에서 적층가공으로 제조된 Ti-6Al-4V 합금의 공식 저항성 비교 (Comparing Resistances to Pitting Corrosion of Additive Manufactured Ti-6Al-4V Alloys in NaCl and NaBr Aqueous Solutions)

  • 서동일;이재봉
    • Corrosion Science and Technology
    • /
    • 제18권3호
    • /
    • pp.110-116
    • /
    • 2019
  • Resistances to pitting corrosion of additive manufactured (AM) Ti-6Al-4V alloys in 0.6 M NaBr and 0.6 M NaCl aqueous solutions were compared using micro-droplet cell techniques. With respect to the pitting corrosion resistance, this study focused on two different types of halide anions in aqueous solutions, i.e. $Br^-$ and $Cl^-$. The differences between $Br^-$ and $Cl^-$ halide anions for breakdown on passive films of AM Ti-6Al-4V alloy were explained using Langmuir adsorption model with their equilibrium adsorption coefficients. The results of the analysis showed that the lower resistance to pitting potential of AM Ti-6Al-4V alloy in $Br^-$ aqueous solution was attributed to the higher equilibrium adsorption coefficient of Br-. In addition, micro-electrochemical test results showed that the pitting corrosion resistance of dark grains in additive manufactured Ti-6Al-4V alloy was lower as compared to that of bright grains due to the larger volume of ${\alpha}^{\prime}$ phase that caused the susceptibility to pit initiation.

피팅 파손면적분석기법을 이용한 기어재의 피팅 수명 실험 (Pitting Life Experiments of Gear Material using a Damaged Area Analysis Method)

  • 주진욱;이병욱;문석만;김태완;조용주
    • 한국정밀공학회지
    • /
    • 제27권11호
    • /
    • pp.92-97
    • /
    • 2010
  • The object of this study is to investigate the definite method for pitting damaged surfaces. Pitting is a sort of fatigue damages and it is made by a repetitive load. For a judgment between damages or not, sensing vibrations of test equipment is simple. However, it is not only difficult to observe a growth of pitting but also impossible to detect the juncture of initial pitting. Therefore, a method for the pitting damaged area measuring technique was effectively implemented by Two Roller Machine. The change of surface damaged area was measured by an optical microscope in regular time and calculated by the use of dark and bright ratio of test specimens' pictures taken by optical microscope. In conclusion, S - N Curves gained by Failure rate - Cycle graph was led and the curves are able to be chosen as occasion demands for a failure area percentage.

윤활유 공급량에 따른 스퍼 기어의 피팅 수명에 관한 연구 (A Study for Influences of Supplied Lubricant Quantities on Pitting Life of Spur Gears)

  • 주진욱;문석만;김태완;조용주
    • Tribology and Lubricants
    • /
    • 제27권1호
    • /
    • pp.40-44
    • /
    • 2011
  • The object of this study is to investigate influences of supplied lubricant quantities on spur gear's pitting life. Pitting is a sort of contact fatigue failures and made by a repetitive load. Basically, pitting is difficult to predict its life by an analysis due to many factors to be considered about tribology problems. In this paper, pitting life was proved by experiment using two roller machine. For a contact fatigue test, operating circumstances should be considered. During the test, temperature and lubricant quantities are considered and to investigate an influence of lubricant quantities, a comparison between optimally enough and not enough lubricant quantity was implemented.

슈퍼 듀플렉스 스테인리스강 다층용접부의 미세조직 및 공식(Pitting Corrosion)에 미치는 용접열사이클의 영향 (Effect of Welding Thermal Cycle on Microstructure and Pitting Corrosion Property of Multi-pass Weldment of Super-duplex Stainless Steel)

  • 남성길;박세진;나혜성;강정윤
    • Journal of Welding and Joining
    • /
    • 제28권4호
    • /
    • pp.18-25
    • /
    • 2010
  • Super-duplex stainless steels (SDSS) have a good balance of mechanical property and corrosion resistance when they consist of approximately equal amount of austenite and ferrite. The SDSS needs to avoid the detrimental phases such as sigma(${\sigma}$), chi(${\chi}$), secondary austenite(${\gamma}2$), chromium carbide & nitride and to maintain the ratio of ferrite & austenite phase as well known. However, the effects of the subsequent weld thermal cycle were seldom experimentally studied on the micro-structural variation of weldment & pitting corrosion property. Therefore, the present study investigated the effect of the subsequent thermal cycle on the change of weld microstructure and pitting corrosion property at $40^{\circ}C$. The thermal history of root side was measured experimentally and the change of microstructure of weld root & the weight loss by pitting corrosion test were observed as a function of the thermal cycle of each weld layer. The ferrite contents of root weld were reduced with the subsequent weld thermal cycles. The pitting corrosion was occurred in the weld root region in case of the all pitted specimen & in the middle weld layer in some cases. And the weight loss by pitting corrosion was increased in proportional to the time exposed at high temperature of the root weld and also by the decrease of ferrite content. The subsequent weld thermal cycles destroy the phase balance of ferrite & austenite at the root weld. Conclusively, It is thought that as the more subsequent welds were added, the more the phase balance of ferrite & austenite was deviated from equality, therefore the pitting corrosion property was deteriorated by galvanic effect of the two phases and the increase of 2nd phases & grain boundary energy.

Mechanism of Environmentally-Induced Stress Corrosion Cracking of Zr-Alloys

  • Park, Sang Yoon;Kim, Jun Hwan;Choi, Byung Kwon;Jeong, Yong Hwan
    • Corrosion Science and Technology
    • /
    • 제6권4호
    • /
    • pp.170-176
    • /
    • 2007
  • Iodine-induced stress corrosion cracking (ISCC) properties and the associated ISCC process of Zircaloy-4 and an Nb-containing advanced nuclear fuel cladding were evaluated. An internal pressurization test with a pre-cracked specimen was performed with a stress-relieved (SR) or recrystallized (RX) microstructure at $350^{\circ}C$, in an iodine environment. The results showed that the $K_{ISCC}$ of the SR and RX Zircaloy-4 claddings were 3.3 and 4.8MPa\;m^{0.5}, respectively. And the crack propagation rate of the RX Zircaloy-4 was 10 times lower than that of the SR one. The chemical effect of iodine on the crack propagation rate was very high, which was increased $10^4$ times by iodine addition. Main factor affecting on the micro-crack nucleation was a pitting formation and its agglomeration along the grain boundary. However, this pitting formation on the grain-boundary was suppressed in the case of an Nb addition, which resulted in an increase of the ISCC resistance when compared to Zircaloy-4. Crack initiation and propagation mechanisms of fuel claddings were proposed by a grain boundary pitting model and a pitting assisted slip cleavage model and they showed reasonable results.

Micro-scale Observation of Corrosion of Hot-Dip Aluminized 11% Cr Stainless Steel

  • Cho, Min-Seung;Park, Choong-Nyeon;Park, Chan-Jin
    • Corrosion Science and Technology
    • /
    • 제18권3호
    • /
    • pp.73-77
    • /
    • 2019
  • Hot-dip aluminized coating has been widely used to protect steel substrate against corrosion. In this study, the corrosion behavior of hot-dip aluminized type 409L (11% Cr) stainless steel (SS) was investigated using macro- and micro-scale polarization tests. An Al-Fe-Si alloy layer that was formed due to inter-diffusion of alloying elements between Al coating and SS substrate was observed between Al coating and 409L SS substrate. In both macro- and micro-scale polarization tests, the corrosion potential ($E_{corr}$) of the 409L SS substrate was much nobler than that of the Al coating and alloy layer. $E_{corr}$ of the alloy layer was between that of Al coating and 409L SS substrate. This indicates that the alloy layer can act as a buffer between the more active Al coating and the nobler SS substrate for pit growth in aluminized SS. The presence of the alloy layer appears to be helpful in hindering pitting corrosion of aluminized SS.

마이크로 드로플릿 셀 기법을 이용한 예민화 된 304 스테인리스강의 미세전기화학 특성 (Micro-electrochemical Characteristics of Sensitized 304 Stainless steel Using Micro-droplet cell Techniques)

  • 김규섭;이재봉
    • Corrosion Science and Technology
    • /
    • 제9권6호
    • /
    • pp.300-309
    • /
    • 2010
  • The influences of sensitization on localized corrosion resistance of 304 stainless steel, were investigated, using micro-dropletcell techniques. Micro-droplet cell allows one to align the micro-electrode to the desired spot of the working electrode and measure directly local current with the potentiodynamic polarization, linear polarization and a.c. impedance. Micro-electrochemical tests were carried out inside of the grain and on grain boundaries separately. It was found that sensitization decreased the pitting potential, increasing corrosion current density around grain boundaries. Galvanic current density was also measured between grain and grain boundaries.