• Title/Summary/Keyword: Micro Metal Forming

Search Result 83, Processing Time 0.022 seconds

Development of Micro Metal Forming Manufacturing System (초미세 마이크로 소성성형 가공시스템 기술 개발)

  • Lee Nak-Kyu;Choi Tae-Hoon;Lee Hye-Jin;Chi Seog-Ou;Park Hoon-Jae;La Won-Ki
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.383-388
    • /
    • 2005
  • In this paper Research development about a micro metal forming manufacturing system has been developed. A micro forming system has been achieved in Japan and it's developed micro press is limited to single forming process. To coincide with the purpose to be more practical, research and development is necessary about the press which the multi forming process is possible. We set the development of the equipment including micro deep drawing, micro punching and micro restriking process to the goal. To achieve this goal, Research about micro forming process to be related to multi process forming must be preceded first. Material selection and analysis about micro forming process are accomplished in this paper. And the basis research to make actual system is accomplished.

  • PDF

Characteristic analysis of low frequency vibration forming (저주파 가진 성형의 특성 분석)

  • Park, C.J.;Choi, J.P.;Park, D.Y.;Hong, N.P.;Lee, H.J.;Lee, N.K.;Kim, S.O.;Chu, Andy;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.254-258
    • /
    • 2009
  • In this paper, the low frequency vibration forming system is developed for micro-patterns formation on the metal substrate. many researchers have studied about micro-forming technologies such as micro deep drawing, press forming, forging, extrusion etc. for the formation of precise micro-patterns on the surface of metal substrates, multi-step forming process must be used to improve qualifies of the deformed patterns. Since the low frequency vibration forming system could easily deform the surface of metal substrates, several steps of multi-step forming process should be removed by using the low frequency vibration forming system. In order to find optimal process conditions, we have carried out low frequency vibration forming process with varying the vibration frequency from 110Hz to 500Hz.

  • PDF

Micro Channel Forming with Ultra Thin Metal Foil (초미세 금속 박판의 마이크로 채널 포밍)

  • Joo, Byung-Yun;Oh, Soo-Ik;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.157-163
    • /
    • 2006
  • Our research dealt with micro fabrication using micro forming process. The goal of the research was to establish the limit of forming process concerning the size of forming material and formed shape. Flat-rolled ultra thin metallic foils of pure copper(3.0 and $1.0{\mu}m$ in thickness)and stainless steel($2.5{\mu}m$ in thickness) were used for forming material. We obtained the various shapes of micro channels as using designed forming process. $12-14{\mu}m$ wide and $9{\mu}m$ deep channels were made on $3.0{\mu}m$ thick foil and $6{\mu}m$ wide and $3{\mu}m$deep channels were made on $1.0{\mu}m$ thick foil. Si wafer die for forming was fabricated by using etching technique. And the relation of etching time and die dimension was investigated for fabricating precisely die groove. For the forming, die and metal foil were vacuum packed and the forming was conducted with a cold isostatic press. The formed channels were examined in terms of their dimension, surface qualities and potential for defects. Base on the examinations, formability of ultra thin metallic foil was also discussed. Finally, we compared the forming result with simulation. The result of research showed that metal forming technology is promising to produce micro parts.

Development of Micro Press for Forming the Micro Thin Foil Valve (마이크로 박판 밸브 성형을 위한 마이크로 프레스 개발)

  • Lee, Hye-Jin;Lee, Nak-Kyu;Lee, Hyoung-Wook
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.166-171
    • /
    • 2007
  • In this paper Research development about a micro metal forming manufacturing system has been developed. A micro forming system has been achieved in Japan and it's developed micro press is limited to single forming process. To coincide with the purpose to be more practical, research and development is necessary about the press which the multi forming process is possible. We set the development of the equipment including micro deep drawing, micro punching and micro restriking process to the goal. To achieve this goal, we set the application product to a micro thin foil valve which is used in the micro pump module. The compound die set has been designed and manufactured to make two step process. The material of thin foil valve is SUS-304 and its thickness is 50$\mu$m. We can get a good forming results from micro punching experiments in this paper.

Development of Manufacturing Technology for Milli-Structure (Milli-Structure 생산기술개발)

  • 나경환;박훈재;조남선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1039-1042
    • /
    • 2000
  • This research will deal with Innovative manufacturing technology for milli-structure manufacturing technology which is located betweon the traditional manufacturing technology for macro-sized structure and the recently emerging manufacturing technology for micro-scaled structure such as MEMS. There are four fields in this research, which are micro-sheet metal forming technology, micro-bulk forming technology micro-molding technology and micro die making technology. As a project for new-technology in next generation, this research will be carried out through three terms and each term and be composed of three years.

  • PDF

A Study on the Micro Forming of Al-based Superplastic Alloy and Zr-BMG for the Cavity Position (Al5083 초소성 합금과 Zr-BMG의 Cavity 위치에 따른 마이크로 성형연구)

  • Son, S.C.;Park, K.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.258-262
    • /
    • 2008
  • Micro forming is a suited technology to manufacture very small metallic parts(several $mm{\sim}{\mu}m$). In this study, the micro forming property was studied, using Al5083 superplastic alloy with micro grain, suitable for the micro forming process and Zr-BMG amorphous with pseudo-superplastic phenomena in the supercooled liquid state. Micro forming experiments under stastic load status showed that distortion by slip and spin of the grain system and slip inside the grain was observed in the Al5083 superplastic alloy. In case of Zr-BMG, because there is no grain, the distribution of the forming property was similar to the load distribution between punch and metal.

  • PDF

Design of Roll-to-Roll Forming Process for Micro Pattern on the Thin Sheet Metal by Finite Element Analysis (유한요소해석을 이용한 마이크로 박판 미세 패턴 롤-롤 성형공정 설계)

  • Cha, S.H.;Shin, M.S.;Lee, H.J.;Kim, J.B.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.167-172
    • /
    • 2010
  • Roll-to-roll forming process is one of important metal processing technology because the process is simple and economical. These days, with these merits, roll-to-roll forming process is tried to be employed in manufacturing the circuit board, barrier ribs and solar cell plate. However, it is difficult to apply to the forming of micro scale or sub-micro scale pattern. In this study, the roll forming processing for the micro scale is designed and analyzed. The forming of micro pattern for small electric device such as LCD panel by incremental roll forming process is analyzed. Firstly, the optimum analysis conditions are found by several analyses. And then, formability is analyzed for various protrusion shapes at various forming temperatures. The formability is evaluated in terms of filling ratio and damage value. The filling ratio is defined from the tool geometry and critical damage is determined from the analysis of uniaxial tensile test. Finally, optimum forming conditions that guarantee the successful forming are found.

Micro channel forming of ultra thin copper foil (초미세 구리 박판의 마이크로 채널 성형)

  • Joo B. Y.;Rhim S. H.;Oh S. I.;Baek S. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.49-53
    • /
    • 2005
  • The objective of this research was to establish the size limitation of micro metal forming and analyze the formability of foil. Flat-rolled ultra thin metallic copper foil($3{\mu}m$ in thickness) was used as a forming material and foil was annealed to improve the formability at the temperature of $385^{\circ}C$. Forming die was fabricated by using etching technique of DRIE(deep reactive ion etching) and HNA isotropic etching. For the forming die and coupe. foil were vacuum packed and the forming was conducted as applying hydrostatic pressure of 250MPa to the vacuum packed unit. We successfully obtained the micro channels of $12\~14{\mu}m$ width and $9{\mu}m$ depth from micro forming process we designed. We also investigated the thickness strain distribution of foil from experiment and FE simulation result. Micro channels had a good formability of smooth surface and size accuracy. We expect that micro metal forming technology will be applied to production of micro parts.

  • PDF

Processing of Micro-Parts by Metal Forming (소성가공에 의한 미세부품 성형기술)

  • 나경환;박훈재;조남선
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.14-19
    • /
    • 2000
  • 현재 자본재산업의 기술낙후는 상품의 수출경쟁력 약화의 근원적인 원인이 되어 결국 지속적으로 선진국의 기술종속을 심화시키고 있다. 이러한 자본재 산업의 문제는 현재의 주력 수출상품의 핵심요소부품생산기술의 미비가 큰 원인이며(거의 주요핵심부품 도는 관련기술은 거의 대부분 수입에 의존하고 있음), 같은 논리로 차세대 신기술의 개발을 통한 첨단 상품의 개발도 이에 필요한 핵심요소부품의 생산기술이 뒤를 바쳐 주지 못한다면 결국 10년 후에도 현재와 같은 현상이 되풀이될 것은 분명하다.(중략)

  • PDF

A Study on the Micro Vibration Forming of Al-based Superplastic Alloy and Zr-based Bulk Metallic Glass (Al계 초소성합금과 Zr계 비정질합금의 마이크로 진동성형에 관한 연구)

  • Son, Seon-Cheon;Park, Kyu-Yeol;Na, Young-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.193-200
    • /
    • 2007
  • Micro forming is a suited technology to manufacture very small metallic parts(several $mm{\sim}{\mu}m$). Al5083 superplastic alloy with very small grains has a great advantage in achieving micro deformation under low stress due to its relatively low strength at a specific high temperature range. Micro forming of $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk Metallic glass(BMG) as a candidate material for this developing process are feasible at a relatively low stress in the supercooled liquid state without any crystallization during hot deformation. In this study, the micro formability of Al5083 superplastic alloy and bulk metallic glass, $Zr_{62}Cu_{17}Ni_{13}Al_8$, was investigated with the specially designed micro vibration forming system using pyramid-shape, V-shape and U-shape micro die pattern. With these dies, micro vibration forming was conducted by varying the applied load, time. Micro formability was estimated by comparing the hight of formed shape using non-contact surface profiler system. The vibration load effect to metal flow in the micro die and improve the micro formability of Al5083 superplastic alloy and $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk Metallic glass(BMG).