• Title/Summary/Keyword: Micro Material Property

Search Result 148, Processing Time 0.029 seconds

A Study on Solid Particle Erosion Characteristics of Surface Treated 12wt%Cr Steel for USC Power Plant (USC 화력발전소용 12wt%Cr강의 표면처리에 따른 고체입자침식특성에 관한 연구)

  • 엄기원;이선호;이의열
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.324-326
    • /
    • 2004
  • l2wt%Cr Steel has been applied on turbine bucket and nozzle partition material of power plant. Turbine bucket and nozzle get damaged by solid particle within steam, therefore they are protected by surface treatments such as ion nitriding, boriding and chrome carbide HVOF spray coating. In this study, solid particle erosion(SPE) characteristics after these surface treatments are examined at operating temperature 540$^{\circ}C$ and 590$^{\circ}C$ of fossil power plant and the mechanism of damage was studied. Erosion of 12wt%Cr steel is originated by micro cutting and that of boriding and chrome carbide HVOF spray is originated by these mechanism - repeating collision, crack initiation and propagation. As the results of SPE test at 540$^{\circ}C$ and 30$^{\circ}$ impact angle that is the most commonly occurred in power plant, Boriding had the best SPE -resistance property, Cr$_2$C$_3$-25(Ni20Cr) HVOF spayed and ion nitrided samples were also better than bare metals(l2wt%Cr Steels). At 590$^{\circ}C$ and 30$^{\circ}$ impact angle, Boriding had also the most superior characteristic and HVOF spay sample was better than bare metal.

  • PDF

Tribological Failure Study of Manual Transmissions in Front Engine and Front Wheel Drive Vehicle (전륜구동 수동변속기에 대한 트라이볼로지적 고장사례 연구)

  • Kim, Chung-Kyun;Lee, Il-Kwon
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.285-290
    • /
    • 2008
  • The purpose of this paper is to present the case study of tribological failure analysis on the gear damages, oil leakage, and sealant sealing in a manual transmission of front engine and front wheel drive vehicle. The manual transmission is to change the speed range and direction of the engines depending on the driving conditions by friction driving forces with input and output gear system. The material property and surface roughness of the gears are strongly related to the gear noise and micro-vibration, oil leakage and wear, which may decrease the real contact area of the gear and the strength of the oil film thickness between the driving gear and driven one. The O-ring damage of speedometer driven gear and bad sealant sealing of oil pan may produce oil leakage through the contact surfaces, which cause the oil shortage and seizure on the sliding surfaces of the transaxle gears. In the failure case study, the proper repair working and good lubrication are very important for the long life of the transaxle without any tribological failures and oil leakage.

A study on micro-deburring of thin magnesium plate for application of electronic products (마그네슘 박판의 전자부품 적용을 위한 마이크로 디버링에 관한 연구)

  • Lee, Jung-In;Kim, Tae-Wan;Kwak, Jae-Seob;Jung, Young-Deug
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.51-54
    • /
    • 2008
  • Drill process is usually used to manufacture a industry about processing, Therefore, the burr problem is very significant, The burrs took place when drill process. And then, sometimes, the burrs are often caused of some problems during automatic such as no good quality products and having good surface roughness products. And also, this paper had some experiments using magnesium. Specially, the magnesium is one of the non-ferromagnetic materials. Magnesium has attracted a lot of interest for using the industry. They offer a possible alternative to steel and aluminum in automotive and aero industries to satisfy the lightweight requirement. also, magnesium has good specific strength and absorbs vibration in occurring working process. So, it has good quality of product processing. And then, it is one of the lightest materials being used to electronic product's cases and automotive because of lightweight and miniaturization. But this material has not widely used all of the industry due to its natural property. If the magnesium is contacted water, it will cause the exploration. But, nowadays many of people study magnesium to safe their experiment and to widely use this industry.

  • PDF

Effects of Titania Whisker Precipitation on Wear Property of the Glass-Ceramic (타이타니아 단섬유상의 석출이 결정화유리의 마모특성에 미치는 영향)

  • 이경호
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.192-202
    • /
    • 1996
  • In Li0.4Ca0.05AlP0.5Si0.75O4.5 composition glass, glass-ceramic having a near 100% crystallinity after nucleation heat treatment of 74$0^{\circ}C$/2 h and crystallization heat treatment of 90$0^{\circ}C$/2 h and in-situ TiO2 whisker reinforced glass-ceramic after heat treatment of 105$0^{\circ}C$ for 20 h were fabricated with the addition of 4% TiO2 as a nucleating agent. With these materials a ball-on-disc type wear test was conducted in order to examine the effect of TiO2 whisker prepcipitation on ambient and high temperature wear properties of the glass-ceramic. Wear test results indicated that all specimens exhibited micro-fracture wear mechanism in ambient temperature. As temperature increased the wear rates of the materials were increased. However the in-situ TiO2 whisker reinforced glass-ceramic exhibited the lowest wear rate over the test temperature range. This resulted from the improvement of harness and fracture toughness of the material as the glass converted into the glass-ceramic followed by precipitation of TiO2 whiskers throughout the glass-ceramic matrix.

  • PDF

Mix Design of High Strength Concrete for the High-Rise Building - The Tallest Building in the World, Burj Dubai Tower - (초고층 구조물에 적용되는 고강도 콘크리트의 배합설계 - 세계 최고층 빌딩 버즈 두바이 타원 사례 -)

  • Kim, Gyu-Dong;Lee, Seung-Hoon;Kim, Jae-Ho;Kim, Kyung-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.445-448
    • /
    • 2006
  • Mix design of C80A which is applied to the vertical members of The Burj Dubai Tower, the tallest building of the world, was performed so as to meet the requirements of rheological property, mechanical properties & construction sequences based on material analysis in Dubai, UAE. Experimental investigations were carried out to evaluate & optimize the quantities of total binders, the proportions of Micro Silica, Dune Sand & PFA, changes of S/a and the comparison of chemical admixture, etc. Approximately $65,000m^3$ of C80A concrete has been poured to the vertical members since 16-Apr-2006. In the actual application, it was showed that C80A has proper early strength achievement, excellent mechanical properties and satisfactory flowability & workability. The results of extensive site testing can be summarized that the average compressive strength at 28days is 98.8MPa, the average elastic modulus at 28days is 47.8GPa, the flow of concrete after pumping at the height of 250m (L72) was over 500mm.

  • PDF

Microstructure Analysis of Rabbit and Chicken Femurs by Light Microscopy and Transmission Electron Microscopy (광학현미경과 투과전자현미경을 이용한 토끼와 닭 대퇴골의 미세구조 분석)

  • Kim, Chang-Yeon;Kim, Eun-Kyung;Jeon, Tae-Hoon;Nam, Seung-Won;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.40 no.3
    • /
    • pp.155-162
    • /
    • 2010
  • Bone is a hierarchically structured composite material which has been well studied by the materials engineering community because of its unique structure and mechanical properties. Bone is a laminated organic-inorganic composite composed of primarily hydroxyapatite, collagen and water. The main mineral that gives bone's hardness is calcium phosphate, which is also known as hydroxyapatite. Light microscopy (LM) and transmission electron microscopy (TEM) were used to study the structure of femurs from chicken and rabbit. The elemental analysis was used to search variation in the distribution of calcium, potassium and oxygen in the femur. Current investigation focused on two structural scales: micro scale (arrangement of compact bone) and nano scale (collagen fibril and apatite crystals). At micro scale, distinct difference was found in microstructures of chicken femur and rabbit femur. At nano scale, we analyzed the shape and size of apatite crystals and the arrangement of collagen fibril. Consequently, femurs of chicken and rabbit had very similar chemical property and structures at nano scale despite of their different species.

The Effect of Hydrogen on Mechanical Properties of Gas Pipeline Material: I Tensile property (가스배관 재료의 기계적특성에 미치는 수소의 영향: I 인장특성)

  • Kim, Woo-Sik;Jang, Jae-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.67-73
    • /
    • 2011
  • One of the important topics to prepare the up-coming era of so-called ‘hydrogen economy’ is hydrogen transmission. Pipeline is conceivably the most economic way to consistently and safely transport a large amount of hydrogen over a long distance, which may be strongly requested in hydrogen economy era. As a good starting point for the purpose, one might wonder whether conventional API pipeline steels as designed for natural gas transmission can be used as the hydrogen pipeline materials or not. To answer the question, here we performed a series of micro-/nano-indentations together with tensile tests on the hydrogen-charged API X65, X70 and X100 steels having different strength level. In this paper, from the results of tensile tests, the hydrogen effects on the mechanical behavior in the API steels are systematically evaluated.

Analysis of the Change in Microstructures of Nano Copper Powders During the Hydrogen Reduction using X-ray Diffraction Patterns and Transmission Electron Microscope, and the Mechanical Property of Compacted Powders (X-선 회절 패턴 측정과 투과 전자 현미경을 이용한 구리 나노분말의 수소 환원 처리 시 발생하는 미세조직 변화 및 치밀화 시편의 물성 분석)

  • Ahn, Dong-Hyun;Lee, Dong Jun;Kim, Wooyeol;Park, Lee Ju;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.21 no.3
    • /
    • pp.207-214
    • /
    • 2014
  • In this study, nano-scale copper powders were reduction treated in a hydrogen atmosphere at the relatively high temperature of $350^{\circ}C$ in order to eliminate surface oxide layers, which are the main obstacles for fabricating a nano/ultrafine grained bulk parts from the nano-scale powders. The changes in composition and microstructure before and after the hydrogen reduction treatment were evaluated by analyzing X-ray diffraction (XRD) line profile patterns using the convolutional multiple whole profile (CMWP) procedure. In order to confirm the result from the XRD line profile analysis, transmitted electron microscope observations were performed on the specimen of the hydrogen reduction treated powders fabricated using a focused ion beam process. A quasi-statically compacted specimen from the nano-scale powders was produced and Vickers micro-hardness was measured to verify the potential of the powders as the basis for a bulk nano/ultrafine grained material. Although the bonding between particles and the growth in size of the particles occurred, crystallites retained their nano-scale size evaluated using the XRD results. The hardness results demonstrate the usefulness of the powders for a nano/ultrafine grained material, once a good consolidation of powders is achieved.

A Study on the Strength Properties of Green Mortar Using Limestone Powder (석회석(石灰石) 미분말(微粉末)을 이용(利用)한 그린모르타르의 강도(强度) 특성(特性)에 관한 연구(硏究))

  • Jo, Byung-Wan;Choi, Ji-Sun;Kim, Kyung-Tae
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.36-42
    • /
    • 2013
  • According to the recent community-based structures enlargement, specification, and diversification. It needs appropriate construction materials in terms of intensity and environmental aspects. Thus, in manufacturing the cement using micro limestone powder which is main material. It is also expected to save energies and reduces $CO_2$, by using the blast furnace slag and fly ash which are mitigated environmental load construction materials that emerged. In this research, The durability aspect tries to be grasped considering the chemical property according to the coherence of the hydration product. Consequently, The compressive strength was measured over 30 Mpa on 3rd. In addition, according to the content of the limestone powder, the setting time is promoted. It has the feature expanded in the length change. And it is determined because the possibility of replacing the existing for construction material such as it is measured compared with the time to use the portland cement usually that flexural strength is high with the age 7 days ago, so it is sufficient.

Micro Pulverization and Surface Modification of Biomass Byproducts for Developing Bio-Degradable Plastic Film (생분해 플라스틱 필름 제조를 위한 바이오매스 부산물의 분체화 및 표면개질 연구)

  • Chung, Sung Taek;Han, Jung-Gu;Lee, Roun;Kim, Pan-Chae;Kuk, YoungRye;Choi, ChunHoan;Park, Hyung Woo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.1
    • /
    • pp.23-30
    • /
    • 2022
  • This study investigated the characteristics for rice husk pulverization and surface modification of biomass byproducts composed of rice husk, corn extract gourd, wheat bran, and soybean curd. The size of particles of rice husk was at 6.44 ㎛ and represented the most affordable material for preparing the bio-degradable film among the tested byproducts. The silane treatment and adding 2% of ESO (Epoxidized soybean oil) and 3-aminopropyl triethoxysilane solution mixed in a 1:1 ratio were best to the surface modification and SEM-based particle shape. Above the results, adding 2% of mixed solution after silane treatment of rice husks processed through an air classifying mill (ACM) allows for its use as a raw material of bio-degradable plastic film.