• Title/Summary/Keyword: Micro Material Property

Search Result 148, Processing Time 0.026 seconds

New Frontiers in Hard Materials Testing

  • Gee, Mark;Gant, Andrew;Morrell, Roger;Roebuck, Bryan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.885-886
    • /
    • 2006
  • Significant advances in mechanical testing for hard materials are discussed in this paper. There are three specific areas that are covered. In the measurement of fracture toughness factors such as the control of slow crack growth to produce strating cracks, and evaluating reproducibility and repeatability of tests have been recently examined. The miniaturization of tests reduces the amount of material that is used in testing, improves the throughput of tests, and also improves cost effectiveness. New techniques such as stepwise testing and micro scratch testing have contributed to significant additions to the knowledge of the wear mechanisms that operate in these materials.

  • PDF

Surface Acoustic Wave Sensor Using Electroactive Paper(EAPap) (Electroactive Paper(EAPap)를 이용한 표면탄성파 센서)

  • Lee, Min-Hee;Kim, Joo-Hyung;Kim, Jae-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1128-1133
    • /
    • 2008
  • Cellulose based electroactive paper(EAPap) has been developed as a new smart material due to its advantages of piezoelectricity, large displacement, low power consumption, low cost and flexibility. EAPap can be used for a surface acoustic wave (SAW) device using the piezoelectric property of EAPap, resulting in the cost effective and flexible SAW device. In this paper, inter digit transducer(IDT) structure using lift-off technique with a finger gap of 10mm was used for micro fabrication of the cellulose EAPap SAW devices. The performance of IDT patterned SAW device was characterized by a Network Analyzer. The feasibility of cellulose EAPap as a potential acoustic device was presented and explained.

Physical Properties of MiDF Cement Composites According to Manufacturing Conditions (제조 조건에 따른 MiDF 시멘트 복합체의 물리적 특성)

  • Park, June Hyoung;La, Jung Min;Kim, Jin Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.138-139
    • /
    • 2021
  • The MiDF Cement Composite is a high-performance construction material with low defects that dehydrates surplus water through pressurization and minimizes air gap between particles. In other words, the performance expression of the MiDF cement complex is affected by pressurized conditions. Thus, this study analyzed the physical characteristics of MiDF cement complex according to the power and pressure of the ga-power and the time of application and intends to use it as a basic data for optimal mixing.

  • PDF

A Study on the Characteristic of MOS structure using $HfO_{2}$ as high-k gate dielectric film ($HfO_{2}$를 이용한 MOS 구조의 제작 및 특성)

  • Park, C.I.;Youm, M.S.;Park, J.W.;Kim, J.W.;Sung, M.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.163-166
    • /
    • 2002
  • We investigated structural and electrical properties of Metal-Oxide-Semiconductor(MOS) structure using Hafnium $oxide(HfO_{2})$ as high-k gate dielectric material. $HfO_{2}$ films are ultrathin gate dielectric material witch have a thickness less than 2.0nm, so it is spotlighted to be substituted $SiO_{2}$ as gate dielectric material. In this paper We have grown $HfO_{2}$ films with pt electrode on P-type Silicon substrate by RF magnetron sputtering system using $HfO_{2}$ target and oserved the property of semiconductor-oxide interface. Using pt electrode, it is necessary to be annealed at ${300^{\circ}C}$. This process is to increase an adhesion ratio between $HfO_{2}$ films with pt electrode. In film deposition process, the deposition time of $HfO_{2}$ films is an important parameter. Structura1 properties are invetigated by AES depth profile, and electrical properties by Capacitance-Voltage characteristic. Interface trap density are measured to observe the interface between $HfO_{2}$ with Si using High-frequency(1MHz) C-V and Quasi - static C-V characteristic.

  • PDF

Polishing Pad Analysis and Improvement to Control Performance (연마성능 제어를 위한 연마패드표면 해석과 개선)

  • Park, Jae-Hong;Kinoshita, Masaharu;Yoshida, Koichi;Park, Ki-Hyun;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.839-845
    • /
    • 2007
  • In this paper, a polishing pad has been analyzed in detail, to understand surface phenomena of polishing process. The polishing pad plays a key role in polishing process and is one of the important layer in polishing process, because it is a reaction layer of polishing[1]. Pad surface physical property is also ruled by pad profile. The profile and roughness of pad is controlled by different types of conditioning tool. Conditioning tool add mechanical force to pad, and make some roughness and profile. Formed pad surface will affect on polishing performance such as RR (Removal Rate) and uniformity in CMP Pad surface condition is changed by conditioning tool and dummy run and is stable at final. And this research, we want to reduce break-in and dummy polishing process by analysis of pad surface and artificial machining to make stable pad surface. The surface treatment or machining enables to control the surface of polishing pad. Therefore, this research intends to verify the effect of the buffing process on pad surface through analysis of the removal rate, friction force and temperature. In this research, urethane polishing pad which is named IC pad(Nitta-Haas Inc.) and has micro pore structure, is studied because, this type of pad is most conventional type.

Evaluation of Fracture Toughness and AE Characteristics in Functionally Gradient Material by means of MSP Test (MSP 시험법에 의한 경사기능재료의 파괴인성 및 AE 특성 평가)

  • 송준희;임재규;정세희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.631-638
    • /
    • 1995
  • In this study, mechanical characteristics test of Functionally Gradient Materia (FGM) was performed by means of Modified Small Punch (MSP) Test with FGM; NiCrAlY-8YSZ and PSZ-Ni. To determine fracture mechanic factor, it was carried out MSP test that has possibility with small specimen (10*10*0.5 mm$^{t}$ ) and AE test to analyze micro fracture mechanism. As a result, fracture behavior became varied from brittle fracture to ductile as the content of Ni(or NiCrAlY) composition was increased and fracture energy was increased too. AE characteristics demonstrated that AE technique can detect the onset of fracture processes and AE energy was suddenly increased in the vicinity of maximum load. Since Young's modulus, fracture stress and fracture toughness was determined by MSP test, it can be known that the composition of NiCrAly 75%/8YSZ25% has the best mechanical property and furthermore this result is supported with fracture surface observation.

Improvement of Physical Property of Autoclaved Light-Weight Concrete Using Admixtures and Chemical Reactants (혼화재 및 화학반응제를 혼입한 경량기포콘크리트의 물성 개선)

  • Song, Hun
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.4
    • /
    • pp.87-95
    • /
    • 2012
  • Autoclaved lightweight concrete (ALC), also known as autoclaved aerated concrete (AAC), is a lightweight, precast building material that simultaneously provides structure, insulation. ALC is a unique building material. Because of its cellular nature, it is lightweight, self-insulating, as well as sound and fireproof. ALC products include blocks, wall panels, floor and roof panels, and lintels. Recently, the use of ALC has became increasingly popular. However, ALC have high water absorption, low compressive strength and popout the origin of the low surface strength in its properties. Thus, this study is to improve the fundamental strength by controls of increasing of admixtures and chemical reactants. Admixtures make use of meta kaolin and silica fume, chemical reactants make use of sodium silicate and sodium hydroxide. From the test result, the ALC using admixtures and chemical reactants have a good fundamental properties compared with plain ALC. These good fundamental properties is caused by the admixtures and chemical reactants of ALC by the reason of the micro filling effect and chemical binding of C-S-H gel, tobermolite and quartz.

Characteristics of Micro-hardness and Corrosion of Electroless Nickel-Phosphorus Plating depending on Heat Treatment

  • Jung Seung-Jun;Park Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.4
    • /
    • pp.196-199
    • /
    • 2000
  • Electroless plating is the desirable surface treatment method which is being widely used to all kinds of material such as requiring corrosion resistance, wear resistance and conductivity, especially plating of nonconductive material. Electroless nickel deposit has particular characteristics including non-magnetic property, amorphous structure, wear resistance, corrosion protection and thermal stability. In this study, electroless nickel plating was studied with an change in hardness and corrosion resistance of electroless nickel-phosphorus deposit depending on heat treatment. The highest hardness value was obtained by heat treatment at $500^{\circ}C$ Corrosion resistance of deposit, which had been heated at $300^{\circ}C$, was excellent when it was immersed in 1M $H_2SO_4$ solution for 60 hrs.

Stability and Improvement of Polishing Pad in W CMP (W CMP 공정에서의 연마패드표면 안정화 상태와 그 개선)

  • Park, Jae-Hong;Kinoshita, Masaharu;Yoshida, Koichi;Matsumura, Shinichi;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1027-1033
    • /
    • 2007
  • In this research, the polishing pad for W CMP has been analyzed to understand stabilization of polishing performance. For stabilization of process, the polishing pad condition is one of important factors. The polishing pad plays a key role in polishing process, because it contact with reacted surface of wafer[1]. The physical property of pad surface is ruled by conditioning tool which makes roughness and profile of pad surface. Pad surface affects on polishing performance such as RR(Removal Rate) and uniformity in CMP. The stabilized pad surface has stable roughness. And its surface has high level of wettability which can increase the probability of abrasive adhesion on pad. The result of this research is that the reduction of break-in and dummy polishing process were achieved by artificial machining to make stable pad surface. In this research, urethane polishing pad which is named IC pad(Nitta-Haas Inc.) and has micro pore structure, is studied. Because, this type of pad is the most conventional type.

Microwave dielectric properties of $Nd_2O_3-ZnO-B_2O_3$ glass-added alumina ($Nd_2O_3-ZnO-B_2O_3$계 유리 첨가 알루미나 복합체의 유전 특성)

  • Kim, Kyeong-Beom;Shin, Hyun-Ho;Yoon, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.326-326
    • /
    • 2007
  • Influence of $Nd_2O_3$ addition to $ZnO-B_2O_3$-based glass on the water leaching resistance of the glass was first investigated. The optimized $Nd_2O_3-ZnO-B_2O_3$ (NZB) glass was ball milled for varying time, mixing with followed by $Al_2O_3$ crystalline phase to form $Al_2O_3$-NZB glass composites at $875^{\circ}C$ for 1h. Microwave dielectric properties of the composites were investigated as a function of the ball milling time of the NZB glass. Dielectric constant and quality factor were 5.70 and 9497 GHz, respectively, when the NZB glass was ball milled for 6h prior to mixing with $Al_2O_3$.

  • PDF