• Title/Summary/Keyword: Micro Manipulator

Search Result 55, Processing Time 0.023 seconds

3-DOF Parallel Micromanipulator : Design Consideration (3차원 평형 마이크로조정장치 : 설계 고려사항)

  • Lee, Jeong-Ick;Lee, Dong-Chan;Han, Chang-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.13-22
    • /
    • 2008
  • For the accuracy correction of the micro-positioning industrial robot, micro-manipulator has been devised. The compliant mechanisms using piezoelectric actuators is necessary geometrically and structurally to be developed by the optimization approaches. The overall geometric advantage as the mechanical efficiencies of the mechanism are considered as objective functions, which respectively art the ratio of output displacement to input force, and their constraints are the vertical notion of supporting leg and the structural strength of manipulation. In optimizing the compliant mechanical amplifier, the sequential linear programming and an optimality criteria method are used for the geometrical dimensions of compliant bridges and flexure hinges. This paper presents the integrated design process which not only can maximize the mechanism feasibilities but also can ensure the positioning accuracy and sufficient workspace. Experiment and simulation are presented for validating the design process through the comparisons of the kinematical and structural performances.

Control System Design for Stable Teleoperation of Supermicrosurgical Robot (초미세수술 로봇의 안정적인 원격조작을 위한 제어시스템 설계)

  • Geonuk Kim;Raimarius Delgado;Yong Seok Ihn
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.169-175
    • /
    • 2024
  • In this study, we developed control system for stable teleoperation of supermicrosurgical robot platform. The supermicrosurgical robot platform is designed to perform precise anastomosis with micro vessels ranging from 0.3 mm to 0.7 mm. The robotic assistance could help more precise manipulation then manual surgery with the help of motion scaling and tremor filtering. However, since the robotic system could cause several vulnerabilities, control system for stable teleoperation should be preceded. Therefore, we first designed control system including inverse kinematics solver, clutch error interpolator and finite state machine. The inverse kinematics solver was designed to minimized inertial motion of the manipulator and tested by applying orientational motion. To make robot slowly converges to the leader's orientation when orientational error was occurred during clutch, the SLERP was used to interpolate the error. Since synchronized behavior of two manipulators and independent behavior of manipulator both exist, two layered finite state machines were designed. Finally, the control system was evaluated by experiment and showed intended behavior, while maintaining low pose error.

Implementation of the Adaptive-Neuro Controller of Industrial Robot Using DSP(TMS320C50) Chip (DSP(TMS320C50) 칩을 사용한 산업용 로봇의 적응-신경제어기의 실현)

  • 김용태;정동연;한성현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.38-47
    • /
    • 2001
  • In this paper, a new scheme of adaptive-neuro control system is presented to implement real-time control of robot manipulator using Digital Signal Processors. Digital signal processors, DSPs, are micro-processors that are particularly developed for fast numerical computations involving sums and products of measured variables, thus it can be programmed and executed through DSPs. In addition, DSPs are as fast in computation as most 32-bit micro-processors and yet at a fraction of therir prices. These features make DSPs a viable computational tool in digital implementation of sophisticated controllers. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust perfor-mance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method.The proposed adaptive-neuro control scheme is illustrated to be a efficient control scheme for the implementation of real-time control of robot system by the simulation and experi-ment.

  • PDF

The Adaptive-Neuro Controller Design of Industrial Robot Using TMS320C3X Chip (TMS320C30칩을 사용한 산업용 로봇의 적응-신경제어기 설계)

  • 하석흥
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.162-169
    • /
    • 1999
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator using digital Signal Processors. Digital signal processors DSPs. are micro-processors that are particularly developed for variables. Digital version of most advanced control algorithms can be defined as sums and products of measured variables, thus it can be programmed and executed through DSPs. In addition, DSPs are as fast in computation as most 32-bit micro-processors and yet at a fraction of their prices. These features make DSPs a biable computatinal tool in digital implementation of sophisticated controllers. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. The proposed adaptive-neuro control scheme is illustrated to be a efficient control scheme for implementation of real-time control of robot system by the simulation and experiment.

  • PDF

Development of a Noncontacting 6 DOF Micro-Postioner Driven by Magnetic Force-Design, Modeling and Control- (자기력을 이용한 비접촉 6자유도 미소위치결정 기구의 개발-설계, 모델링 및 제어-)

  • Choi, Kee-Bong;Park, Kyi-Hwan;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1164-1176
    • /
    • 1996
  • A magnetically levitated micro-positioner is implemented to avoid mechanical friction and increase precision. Since magnetic levitation system is inherently unstable, most concern is focused on a magnetic circuit design to increase the system dynamic stability. For this, the proposed levitation system is constructed by using an antagonistic structure which permits a simple design and robust stability. From the dynamic equations of motion, it is verified that the proposed magnetically levitated system is decoupled in 6 degree-of-freedom motion. Experimental results are presented in terms of time response and accuracy.

Effects of Freezing on Bisected Mouse Embryos 1. Developmental Potentials of Bisected Mouse Embryos in vitro (절단마우스 이분배의 동결보존실험 1. 마우스 절단이분배의 체외 발육능에 대하여)

  • Hwang Woo-Suk
    • Journal of Veterinary Clinics
    • /
    • v.2 no.1
    • /
    • pp.121-131
    • /
    • 1985
  • Mouse embryos of 8-cell stage and compacted morulae(approximately 16 cells) containing different number of blastomeres were bisected and cultured in vitro to determine the developmental potentials of the divided embryos compared with those of unmanipulated control embryos. The results were as follows. 1. Micromanipulation was performed successfully by means of a simple manipulator which holds a fine glass, needle, without the use of any micro-instruments for support. 2. The percentage of bisected morulae with 7-9 blastomeres that developed to eu-blastocyst was 94.1% while only 64.8% of the bisected 8-cell embryos with 4 blastomeres developed to eublastocysts (p<0.05). 3. The percentage of eu-blastocysts decreased, while that of pseudoblastocysts and trophectodermal vesicle increased as the number of blastomeres decreased in the bisected embryos of the two stages. 4. The time of the blastocoele re-formation of the bisected and control embryos was not significantly different in morulae stage embryos, but it was significantly delayed in the 8-cell stage embryos (Eu-B, Pseudo-B) compared with control embryos (P<0.01, P<0.05 respectively).

  • PDF

Fast and Fine Tracking Control System Using Coarse/Fine Compound Actuation

  • Kwon, Sang-Joo;Chung, Wan-Kyun;Youngil Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.463-463
    • /
    • 2000
  • A dual-stage positioner for fast and fine robotic manipulations is presented. By adopting the merits of both coarse and fine actuator, a desirable system having the capacity of large workspace with high resolution of motion is enabled. We have constructed an ultra precision XY positioner with dual-stage mechanism where the PZT driven fine stage is mounted on the motor driven XY positioner and applied it to fine tracking controls and micro-tele operations as a slave manipulator. We describe essential merits of the compound actuation mechanism and some control strategies to successfully utilize it with proper servo system design. Through experimental results, the effectiveness of the coarse/fine manipulation by the dual-stage positioner will be shown.

  • PDF

Development of a Driving Operation System for Vehicle Simulator (차량 시물레이터의 운전석 시스템 개발)

  • 유성의;박민규;유기성;이민철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.291-291
    • /
    • 2000
  • A vehicle driving simulator is a virtual reality device which a human being feels as if the one drives a vehicle actually. Driving Operation System acts as an interface between a driver and a driving simulator. This paper suggests the driving operation system for a driving simulator. This system consists of a controller, DC geared motor, MR brake, rotary encoders, steeping motor and bevel gear box. Reaction force and torque on the steering system were made by DC_Motor and MR_Brake. Reaction force and torque on the steering system were compare between real car and a driving simulator. The controller based on the 80C196KC micro processor that manage and transfer signal.

  • PDF

Development of manipulator for handling micro components in vacuum (진공용 초소형 제품조작을 위한 매니퓰레이터 제작)

  • Yun Deokwon;Choi Hyeunseok;Han Changsoo;Choi Hunjong;Hong Wonpyo;Kang Eungoo
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.40-44
    • /
    • 2005
  • Recently PZT is used in ultra precision mechanism field. PZT itself has a small driving range although it has a high resolution. Many methods, such as inchworm, impact driving, inertial sliding method, etc., have been applied for moving range expansion. In this study, a new actuating mechanism for rotational motion with two driving PZT is proposed. The Fixed-Fixed beam support is applied for compensation of the difference in driving force between expansion and contraction of PZT. The behavior and design parameters of the proposed mechanism are analyzed for improving performance.

  • PDF

The Optimum Design of a Spatial 3-DOF Manipulator Using Axiomatic Design (공리적 설계를 이용한 공간형 3자유도 기구의 최적설계)

  • Han Seog Young;Yi Byung-Ju;Kim Seon Jung;Kim Jong O;Chung Goo Bong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.52-60
    • /
    • 2005
  • Ultra-precision positioning systems basically require high natural frequency and sufficient workspace. To cope with this requirement, flexure hinge mechanisms have been developed. However, previous designs are difficult to satisfy the functional requirements of the system due to difficulty in modeling and optimization process applying fur the independent axiomatic design. Therefore, this paper suggests a new design and design procedure based on semi-coupled, axiomatic design. A spatial 3-DOF parallel type micro mechanism is chosen aa an exemplary device. Based on preliminary kinematic analysis and dynamic modeling of the system, an optimum design is conducted. To check the effectiveness of the optimal parameters obtained by theoretical approach, simulation has been performed by FEM.