• 제목/요약/키워드: Micro Manipulator

검색결과 55건 처리시간 0.031초

미세 부품 조작을 위한 탄성힌지 기반 압전소자 구동형 초정밀 머니플레이션 시스템 (A Piezo-driven Fine Manipulation System Based on Flexure Hinges for Manipulating Micro Parts)

  • 최기봉;이재종;김기홍;고국원
    • 제어로봇시스템학회논문지
    • /
    • 제15권9호
    • /
    • pp.881-886
    • /
    • 2009
  • This paper presents a manipulation system consisting of a coarse/fine XY positioning system and an out-of-plane manipulator. The object of the system is to conduct tine positioning and manipulation of micro parts. The fine stage and the out-of-plane manipulator have compliant mechanisms with flexure hinges, which are driven by stack-type piezoelectric elements. In the fine stage, the compliant mechanism plays the roles of motion guide and displacement amplification. The out-of-plane manipulator contains three piezo-driven compliant mechanisms for large working range and fine resolution. For large displacement, the compliant mechanism is implemented by a two-step displacement amplification mechanism. The compliant mechanisms are manufactured by wire electro-discharge machining for flexure hinges. Experiments demonstrate that the developed system is applicable to a fine positioning and fine manipulation of micro parts.

TEM sample preparation using micro-manipulator for in-situ MEMS experiment

  • Hyunjong Lee;Odongo Francis Ngome Okello;Gi-Yeop Kim;Kyung Song;Si-Young Choi
    • Applied Microscopy
    • /
    • 제51권
    • /
    • pp.8.1-8.7
    • /
    • 2021
  • Growing demands for comprehending complicated nano-scale phenomena in atomic resolution has attracted in-situ transmission electron microscopy (TEM) techniques for understanding their dynamics. However, simple to safe TEM sample preparation for in-situ observation has been limited. Here, we suggested the optical microscopy based micro-manipulating system for transferring TEM samples. By adopting our manipulator system, several types of samples from nano-wires to plate-like thin samples were transferred on micro-electro mechanical systems (MEMS) chip in a single step. Furthermore, the control of electrostatic force between the sample and the probe tip is found to be a key role in transferring process.

미세구동을 위한 3자유도 병렬식 매니퓨레이터 개발에 관한 연구 (Development of Three D.O.F. Parallel Manipulator for Micro-motion)

  • 이계영;한창수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.1067-1070
    • /
    • 1995
  • In this paper, we have treated the modeling and development of three degree of freedom parallel manipulator for micromotion based on the Stewart platform type parallel structure. the kinematic modeling was derived from the relation between base coordinate and platform anr the dynamic modeling was from the method of Kinematic Influence Coefficients(KIC) and transferring of the generalized coordinates. Using this method, we presented the method to choose the actuator and joint by investigating the actuating forces needed when the manipulator moves along the given trajectory. In the end, the prototype manipulator was developmented and evaluated.

  • PDF

6자유도를 갖는 정밀 위치제어용 병렬 매니퓰레이터의 기구학 해석 (Kinematic analysis of a 6-degree-of-freedom micro-positioning parallel manipulator)

  • 박주연;심재홍;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.213-216
    • /
    • 1996
  • This paper studies a class of in-parallel manipulators with special geometry where the forward displacement analysis problem can be solved easier than the fully parallel manipulators. Three horizontal links of this mechanism provide 3DOFs(Degrees of Freedom), which are one degree of orientational freedom and two degrees of translatory freedom. Three vertical links of this mechanism provide 3DOFs, which are two degrees of orientational freedom and one degree of translatory freedom. The main advantages of this manipulator, compared with the Stewart platform type, are the capability to produce pure rotation and to predict the motion of the moving platform easily. Since this manipulator has simple kinematic characteristics compared with the Stewart platform, controlling in real-time is possible due to less computational burden. The purpose of this investigation is to develope an analytical method and systematic method to analyze the basic kinematics of the manipulator. The basic kinematic equations of the manipulator are derived and simulation is carried out to show the performance of the mechanism.

  • PDF

로봇 매니퓰레이터 원격 제어 (A remote control robot manipulator using force feedback joystick)

  • 김인수;현웅근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1823-1824
    • /
    • 2008
  • We propose a remote controlled robot manipulator using force feedback joystick. User can control easily 5 d.o.f robot manipulator in 3 demensional space using general joystick. A force sensor attached in developed gripper sends signal to main robot controller so as to know gripper grasp the object. The signal also sent to user through force feedback joystick. We designed a dexterous 5 d.o.f robot manipulator analysis the kinematics and inverse kinematics. The robot was simply developed using serial RC motor. As a main robot controller, we use 32bit MPU(AT91SAM7256) and micro C/OS. To show the validity of our developed robot, a several experiments were demonstrated.

  • PDF

바이오셀 조작을 위한 원격조작 로봇 시스템 (Telerobot System for Biocell Manipulation)

  • 가포노브 이고르;조현찬
    • 한국실천공학교육학회논문지
    • /
    • 제3권1호
    • /
    • pp.193-199
    • /
    • 2011
  • 본 논문에서는 원격조작 미세조정을 위한 매니퓰레이터를 제안한다. $2{\mu}m$정도의 정밀도를 갖는 매니퓰레이터를 설계하고 제어하기 위해 매니퓰레이터의 정밀도를 사전 계산하였고 그에 따른 각종 부품들로 실 시스템을 제작 하였다. 본 논문에서 제작된 원격조작 로봇 시스템은 여러 미세동작 제어 실험을 통해 그 정밀도가 검증하였고 원격 조작 로봇 시스템의 한 부분으로서 미세조정 매니퓰레이터의 적절성이 증명되었다. 제안된 매니퓰레이터는 아나로그적인 여러 요소로 제작 되었으며 논문에서 시스템의 장단점을 분석 하였다.

  • PDF

평면형 3 자유도 병렬 메카니즘의 정밀도 특성에 관한 연구 (Study on the Precision Characteristics of a Planar 3 Degrees-of-Freedom Parallel Mechanism)

  • 김재섭;김희국;조황
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.781-786
    • /
    • 1996
  • In this paper, output precision characteristic of planar 3 and 6 degree-of-freedom parallel mechanisms are investigated. The 6 degree-of-freedom mechanism is formed by adding an additional small link along with an actuated joint in each of serial subchain of the 3 degree-of-freedom mechanism. First, kinematic analysis for two parallel mechanisms are performed, then their first-order kinematic characteristics are examined via isotropic index and minimum velocity transmission ratio of the mechanisms. It can be concluded that the planar 6 degrees-of-freedom parallel mechanism can be very effectively employed as a high-precision macro-micro manipulator from the analysis results when its link lengths are properly chosen.

  • PDF