• Title/Summary/Keyword: Micro Machining System

검색결과 197건 처리시간 0.03초

Micro EDM을 이용한 Lab-on-a-chip금형의 미세 패턴 제작에 관한 연구 (A Study on the Micro Pattern Fabrication of Lab-on-a-chip Mold Master using Micro EDM)

  • 신봉철;김규복;조명우;김보현;정우철;허영무
    • 소성∙가공
    • /
    • 제20권1호
    • /
    • pp.17-22
    • /
    • 2011
  • Recently, analyzing system is studying for applying to biomedical engineering field, actively. Micro fluidics control system has been manufactured using LIGA (Lithographie Galvanoformung und Abformung), Etching, Lithography and Laser etc. However, it is difficult that above-mentioned methods are applied to fabrication of precision mold master efficiently because of long processing time and rising cost of equipments. Therefore, in this study, micro EDM and micro WEDG system were developed to analyze machining characteristics with tool wear, surface roughness and process time. Then, optimal machining conditions could be obtained from the results of analysis. As the results, mold master of staggered herringbone mixer which has a high mixing efficiency, one of passive mixer of Lab-on-a-chip, could be fabricated from micro pattern(< 50um) using micro EDM successfully.

멀티센서를 이용한 마이크로 절삭 공정 모니터링 (The Cutting Process Monitoring of Micro Machine using Multi Sensor)

  • 신봉철;하석재;강민형;허영무;윤길상;조명우
    • 소성∙가공
    • /
    • 제18권2호
    • /
    • pp.144-149
    • /
    • 2009
  • Recently, the monitoring technology of machining process is very important to improve productivity and quality in manufacturing filed. Such monitoring technology has been performed to measurement using vibration signal, acoustic emission signal and tool dynamometer. However, micro machining is limited small-scale parts machining because micro tool is very small and weakness to generate signal in micro machining process. Therefore, this study has efficient sensing technology for real monitoring system in micro machine that is proposed to supplement a disadvantage of single-sensor by multi sensor. From experimental result, it was evaluated tool wear and cutting situation according to repetitive slot cutting condition and changing cutting condition, and it was performed monitoring spindle rpm and condition according to compare acceleration signal with current signal.

소구경 미세홈 고속가공시 가공환경변화에 따른 가공성 평가 (Evaluation of Machinability of Micro groove by Cutting Environments in High Speed Machining using Ball End Mill)

  • 정연행;이태문;강명창;이득우;김정석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.32-37
    • /
    • 2002
  • High speed machining is one of most effective technologies to improve productivity. It can give great advantage for manufacture of die and Moulds. However, when the high speed machining of materials, especially in machining of micro groove, a severely thermal demage was generated on workpiece and tool. Generally, the cutting fluid is used to improve penetration, lubrication, and cooling effect. In order to rise the performance of lubrication, it contains extreme pressure agents (Cl, S, P). But the environment of work room go bad by those additive Therefore, the compressed chilly air with Oil mist system was developed to replace the conventional cutting fluid system. This paper carried out the tests to evaluate the machinability by the cutting environment in high speed micro groove machining of NAK80 (HRC40). Compressed chilly air with oil mist was ejected on the contact area between cutting edge and workpiece. The effectiveness of this developed compressed chilly air with oil mist system was evaluated in terms of tool life. The results showed that the tool life of carbide tool coated TiAIN with compressed chilly air mist cooling was much longer than with dry and flood coolant when cutting the material.

  • PDF

미세홈 고속가공시 절삭유제 공급방식에 따른 가공성 평가 (Cutting Characteristics of Micro grooving by Cutting Environments in High Speed Machining using Ball End Mill)

  • 배정철;정연행;강명창;이득우;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.172-175
    • /
    • 2002
  • High speed machining is one of the most effective technologies to improve productivity. It can give great advantage for manufacture of die and Moulds. However, when machining of micro groove in high speed machining a severely thermal damage was generated on workpiece and cutting tool. Generally, the cutting fluid is used to improve penetration. lubrication. and cooling effect. In order to rise the performance of lubrication. it contains extreme pressure agents (Cl, S, P). But the environment of work room go bad by those additive. Therefore, the compressed chilly air with oil mist system was developed to replace the conventional cutting fluid system. This paper carried out the tests to evaluate the machinability by the cutting environment in high speed micro groove machining of NAK80 (HrC40). Compressed chilly air with oil mist was ejected on the contact area between cutting edge and workpiece. The effect of this developed compressed chilly air with oil mist system was evaluated in terms of tool life. The results showed that the tool lift of carbide tool coated TiAlN with compressed chilly air mist cooling was much longer than that of the dry and flood coolant when cutting the material.

  • PDF

미세입자 분사가공을 위한 3 차원 임의형상 모재용 마스크 모델링 (Mask Modeling of a 3D Non-planar Parent Material for Micro-abrasive Jet Machining)

  • 김호찬;이인환;고태조
    • 한국정밀공학회지
    • /
    • 제27권8호
    • /
    • pp.91-97
    • /
    • 2010
  • Micro-abrasive Jet Machining is one of the new technology which enables micro-scale machining on the surface of high brittle materials. In this technology it is very important to fabricate a mask that prevents excessive abrasives not to machine un-intend surface. Our previous work introduced the micro-stereolithography technology for the mask fabrication. And is good to not only planar material but also for non-planar materials. But the technology requires a 3 dimensional mask CAD model which is perfectly matched with the surface topology of parent material as an input. Therefore there is strong need to develop an automated modeling technology which produce adequate 3D mask CAD model in fast and simple way. This paper introduces a fast and simple mask modeling algorithm which represents geometry of models in voxel. Input of the modeling system is 2D pattern image, 3D CAD model of parent material and machining parameters for Micro-abrasive Jet Machining. And the output is CAD model of 3D mask which reflects machining parameters and geometry of the parent material. Finally the suggested algorithm is implemented as software and verified by some test cases.

마이크로 가공을 위한 웹 기반 설계 가공 시스템 (Web-based Design and Manufacturing System for Micro Fabrication)

  • 안성훈;김형중
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.904-909
    • /
    • 2004
  • In this paper a web-based micro fabrication system is discussed. A commercial CAD and a web browser were used as its user interfaces. In these user interfaces the concepts of Design for Manufacturing (DFM) was implemented providing the fabrication knowledge of micro machining to the designers. Simple databases were constructed to store the fabrication knowledge of materials, tools, and micro machining know-how. The part geometry was uploaded to the web server of this system as an STL (Stereo Lithography) format with process parameters for 3-axis micro milling. A Slice-based process planner automatically provides NC codes for controlling micro stages. A couple of micro parts were fabricated using the system with micro endmills. This design and manufacturing system enables network users to obtain micro-scale prototypes in a rapid manner.

  • PDF

웹 서비스 기반 마이크로 가공 시스템 (Web Service based Micro Fabrication System)

  • 김형중;안성훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.170-173
    • /
    • 2004
  • In this paper a web-based micro fabrication system is discussed. A commercial CAD and a web browser were used as its user interfaces. For the user interfaces, the concepts of Design for Manufacturing (DFM) were implemented providing the fabrication knowledge of micro machining to the designers. Simple databases were constructed to store the fabrication knowledge of materials, tools, and micro machining know-how. The part geometry was uploaded to the web server of this system as an STL (Stereo Lithography) format with process parameters for 3-axis micro milling. A Slice-based process planner automatically provides NC codes for controlling micro stages. A couple of micro parts were fabricated using the system with micro endmills. This design and manufacturing system enables network users to obtain micro-scale prototypes in a rapid manner.

  • PDF

미세 패턴 롤 금형 가공시스템의 온도변화가 가공정밀도에 미치는 영향 연구 (Influence upon Machining Accuracy of Micro-Pattern Roll Mold Processed by Temperature Variation)

  • 제태진;박상천;이강원;노진석;최두선;황경현
    • 소성∙가공
    • /
    • 제18권2호
    • /
    • pp.107-111
    • /
    • 2009
  • Temperature variation happens in micro prism roll mold processing system during machining the prism pattern roll mold using manufacturing optical films of LCD (liquid crystal display). This temperature variation induces pitch errors of the prism patterns. The temperature variation displaces the positions of the diamond cutting tool on the roll which was coated by the copper. In order to prevent the pitch errors, the stabilizing the temperature of machining environment is needed. Therefore, the researching on the temperature variation of the ultra-precision roll mold processing system on the machining of micro prism rot 1 mold is needed. In this paper, the temperature variation of micro prism roll mold processing system is researched, the influence is analyzed, and the study for reducing the pitch errors carried out.

초정밀 평삭가공과 마이크로 펀칭가공을 위한 하이브리드 가공장비 및 공정기술 개발 (Development of Hybrid Machining System and Hybrid Process Technology for Ultra-fine Planing and Micro Punching)

  • 김한희;전은채;차진호;이재령;김창의;최환진;제태진;최두선
    • 한국기계가공학회지
    • /
    • 제12권6호
    • /
    • pp.10-16
    • /
    • 2013
  • Ultra-fine planing and micro punching are separately used for improving surface roughness and machining dot patterns, respectively, of metal molds. If these separate machining processes are applied for machining of identical molds, there could be an aligning mismatch between the machine tool and the mold. A hybrid machining system combining ultra-fine planing and micro punching was newly developed in this study in order to solve this mismatch; hybrid process technology was also developed for machining dot patterns on a mirror surface of a metal mold. The hybrid machining system has X, Y, and Z axes, and a cam axis for ultra-fine planing. The cam axis and attachable and removable solenoid actuators for micro punching can make large and small sizes of dot patterns, respectively. Ultra-fine planing was applied in the first place to improve the surface roughness of a metal mold; the measured surface roughness was about 20nm. Then, micro punching was applied to machine dot patterns on the same mold. It was possible to control the diameter of the dot patterns by changing the input voltage of the solenoid actuator. Before machining, severe inhomogeneous plastic deformation around the machined dot patterns was also removed by annealing heat treatment. Therefore, it was verified that metal molds with dots patterns for optical products can be machined using a hybrid machining system and the hybrid process technology developed in this study.

미세 홈 형성을 위한 마이크로 전해가공에 관한 연구 (A Study on the Electrochemical Micro-machining for Fabrication of Micro Grooves)

  • 박정우;이은상;문영훈
    • 한국정밀공학회지
    • /
    • 제19권4호
    • /
    • pp.101-108
    • /
    • 2002
  • A specially-built EMM (Electrochemical Micro Machining) / PECM (Pulse Electrochemical Machining) cell, a electrode tool filled with non-conducting material, a electrolyte flow control system and a small & stable gap control unit are developed to achieve accurate dimensions of recesses. Two electrolytes, aqueous sodium nitrate and aqueous sodium chloridc arc applied in this study. The farmer electrolyte has better machine-ability than the latter one because of its appropriate changing to the transpassive state without pits on the surface of workpiece. It is easier to control the machining depth precisely by micrometer with pulse current than direct current. This paper also presents an identification method for the machining depth by in-process analysis of machining current and inter electrode gap size. The inter electrode gap characteristics, inc1uding pulse current, effective volumetric electrochemical equivalent and electrolyte conductivity variations, are analyzed based on the model and experiments.