• Title/Summary/Keyword: Micro Gear

Search Result 73, Processing Time 0.027 seconds

Study on Effect of Micro Tooth Shape Modification on Power Transmission Characteristics based on the Driving Gear of Rotating Machining Unit (마이크로 치형수정이 선회가공 유닛 구동기어의 동력전달 특성에 미치는 영향에 관한 연구)

  • Jang, Jeong-Hwan;Qin, Zhen;Kim, Dong-Seon;Wu, Yu-Ting;Lyu, Sung Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.91-97
    • /
    • 2019
  • Rotating machining unit is a revolutionary product that can process worm shaft or spiral shaft with fast and precise, a rotary type cutting tool, which is attached to automatic lathe and processes spiral groove on outer circumference of round bar. In this work, a study on micro tooth shape modification method of driving gear train in the rotating machining unit was presented. To observe the effect on power transmission characteristics of the driving gear pair, visualize the gear meshing condition and the load distribution on the gear teeth by using the professional gear train analysis program RomaxDesigner. By comparing the repeated analysis results, the effect of micro tooth shape modification on power transmission characteristics on driving gear can be summarized. The optimized gears were fabricated and measured by precision tester as a validation in this research.

A Study on Micro Manufacturing Technology for 3-Dimensional Micro Parts (마이크로 3차원 입체형상부품 제조기술 연구)

  • Je, J.T.;Choi, D.S.;Lee, E.S.;Whang, K.H.;Shin, B.S.;Lee, J.C.
    • Transactions of Materials Processing
    • /
    • v.15 no.9 s.90
    • /
    • pp.673-678
    • /
    • 2006
  • Demands for micro parts have increased with recent advances in IT and machinery industries. However, the present technology loaves much to be desired to effectively produce parts with the volume of $1mm^{3}$ and less by mechanical method in large quantities. This paper provides a method for efficient quantity production of complete micro 3D structure using micro end-milling cutting process. The possibility has proven via manufacturing experiment of a multistage micro complex gear structure of $500{\mu}m$ in length, $500{\mu}m$ in maximum external diameter and a volume of $1mm^{3}$ and less.

A Study on the Improvement of Transmission Error and Tooth Load Distribution using Micro-geometry of Compound Planetary Gear Reducer for Tractor Final Driving Shaft (트랙터 최종구동축용 복합유성기어 방식 감속기의 Micro-geometry를 이용한 전달 오차 및 치면 하중 분포 개선에 관한 연구)

  • Lee, Nam Gyu;Kim, Yong Joo;Kim, Wan Soo;Kim, Yeon Soo;Kim, Taek Jin;Baek, Seung Min;Choi, Yong;Kim, Young Keun;Choi, Il Su
    • Journal of Drive and Control
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • This study was to develop a simulation model of a compound planetary gear reducer for the final driving shaft using a gear analysis software (KISSsoft, Version 2017, KISSsoft AG, Switzerland). The aim of this study is to analyze transmission error and the tooth load distribution through micro-geometry using the simulation model. The tip and root relief were modified with Micro-geometry in the profile direction, and crowning was modified with Micro-geometry in the lead direction. The transmission error was analyzed using the PPTE (Peak to Peak Transmission Error) value, and the tooth load distribution was analyzed for the concentrated stress on the tooth surface. As a result of modifying tip and relief in the profile direction, the transmission error was reduced up to 40.7%. In the case of modifying crowning in the lead direction, the tooth load was more evenly distributed than before and decreased the stress on the tooth surface. After modifying the profile direction for the 1st and 2nd planetary gear train, the bending and contact safety factors were increased by 31.7% and 17%, and 18.3% and 12.5% respectively. Moreover, the bending and safety factors after modifying lead direction were increased by 59.5% and 32.7%, respectively for the 1st planetary gear train, and 59.6% and 43.6%, respectively for the 2nd planetary gear train. In future studies, the optimal design of a compound planetary gear reducer for the final driving shaft is needed considering both the transmission error and tooth load distribution.

Fabrication of Micro Spur Gear in Nano Grained Al Alloy

  • Lee, Won-Sik;Jang, Jin-Man;Ko, Se-Hyun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.778-779
    • /
    • 2006
  • Manufacturing technologies of micro parts were studied in nano grained Al-1.5mass%Mg alloy. During compressive test at $300^{\circ}C$, the Al alloy showed stain softening phenomenon by grain boundary sliding regardless of strain rate. Micro spur gear with ten teeth (height of $200{\mu}m$ and pitch of $250{\mu}m$) was fabricated with sound shape by micro forging. During micro forging, increase of applied stress induced by friction between material and die surface was effectively compensated by decrease of stress by strain softening behavior and as a result, flow stress increased only about 50 MPa more than that in compressive test

  • PDF

Failure Analysis of Carburized Gears by Microstructural Observation (침탄처리된 기어의 미세 조직학적 손상 원인분석)

  • Chun, Hae Dong;Chang, Sung Ho;Kim, Kyung Wook;Kuk, Youn Ho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.4
    • /
    • pp.191-201
    • /
    • 2014
  • The gear was made of SNC815 case-carburized, quench hardened and tempered steel. The gears were failed far earlier than the expected service life used in the industrial site. Causes of the failed gear were analyzed by microstructure observation. By the SEM and micro structure examinations, the damaged surfaces had been weared and failed by fatigue. Through microscope observation on the damaged surface, it was found that the cause of failure was determined by external overloading and the initial stage of the damage was closely related to complex contact fatigue failure. The overload and contact fatigue contributed to the early failure cause.

Power Transmission Optimization Based on the Driving Gear of a Cross Drilling/Milling Unit using a Micro Geometry Method (마이크로 지오메트리 방법을 이용한 크로스 드릴링/밀링 유닛 구동기어의 동력전달 최적화에 관한 연구)

  • Kim, Dong-Seon;Zhen, Qin;Beak, Gwon-In;Wu, Yu-Ting;Jeon, Nam-Sul;Lyu, Sung Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.93-99
    • /
    • 2019
  • A cross drilling/milling Unit is an important mechanical part which is widely used in many kinds of machining tool, and various gear trains with good accuracy and reliability features are widely used in power transmission systems. A study on a novel power transmission optimization method for driving gear trains in cross drilling/milling units is presented in this paper. A commercial program for gear system simulation, Romax Designer, was used in this research to intuitively observe the gear meshing and the load distribution conditions on the gear teeth. We obtained the optimal modification value through comparing the results of repeated experiments. For validation, optimized gears were fabricated and then measured with a precision tester.

ACOUSTIC EMISSION IN BENDING FATIGUE PROCESS OF CARBURIZING SPUR DEAR BY AE SOUTCE LICATION

  • Sentoku, Hirofumi;Yamato, Hiroyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.142-145
    • /
    • 1995
  • It is important from prevention of the malfunction and an important accident by the failuer, to detect a failuer in revolution devices. The acoustic emission(AE) method is expected as means that defects an abnormal phenomenon of revolution devices earlily and utilized. Although a research example by the AE method is reported regarding a gears, little reserch has been conducted using the AE method for running gears in a bending fatigue process of spur gear teeth. Therefore, in this report, with two micro AE sensors attached to the side of the gear, AE was measured in a bending fatigue process of a carburizing gear by using the power circurating-type machine and AE source location in gear teeth were required. By various analysis in these data, the AE characteristics in the fatigue damaging process of the gear tooth were determined.

  • PDF

Analyses of Influence of Frictional Heat on the Contact Stress of High-speed Micro-gears

  • Kim, Cheol;Kim, Hyeong-Seok
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.244-248
    • /
    • 2015
  • When a small gear rotates at a very high speed over 40,000 rpm, frictional heat is generated on the gear surfaces. Thermal deformations and stresses arising from frictional heat may lower the efficiency and fatigue life of the high-speed gear. Especially, such frictional heat has much stronger effects on the performance of millimeter-sized high-speed gears used for surgical and dental hand-pieces, due to a small surface area. An analytical equation was derived to calculate frictional temperature on a mating gear surface and conduction heat transfer analysis was performed. Thermal deformation and contact stresses were then calculated using FEM for gears used for medical hand-pieces. The contact stresses of the meshed gear and pinion increase by 19.4% and 16.4%, respectively, when the frictional thermal deformations are considered.