• Title/Summary/Keyword: Micro Fluidic System

Search Result 37, Processing Time 0.02 seconds

Fabrication of Micro-fluidic Channels using a Flexible and Rapid Surface Micro-machining Technique (유연하고 신속한 표면미세가공기술을 이용한 Micro-fluidic Channel 제작)

  • 김진산;성인하;김대은
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.97-101
    • /
    • 2002
  • Recently, the need for transporting and manipulating minute amount of fluids in microscale channels (so-called micro-fluidics) has been increasing, especially in biotechnology and biochemical processing. This work demonstrates that the so-called mechano-chemical process which consists of mechanical abrasive action combined with chemical process can be used to f뮤ricate micro-fluidic channels more rapidly and cost effectively than other methods. In this work, capillary filling of fluids in micro-channels was investigated by theoretical approaches and experiments. From the experimental results, it is expected that a complex micro-fluidic system can be fabricated using the micro-fabrication technique and microsystem packaging method described in this work.

Development of Virtual Assembly Process for the Fabrication of Micro-fluidic Systems Using Micro-stereolithography Technology (마이크로 광 조형 기술을 이용하여 미세 유체 시스템을 개발하기 위한 가상 조립 공정의 개발)

  • 강현욱;이인환;조동우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.304-309
    • /
    • 2004
  • As it is difficult to construct a micro-fluidic system composed of micro-mixers, micro-channels and/or micro-chambers in a single process, an assembly process is typically used. The assembling and bonding of micro-parts, however, introduces other problems. In this work, a virtual assembly process was developed that can be used to design various micro-fluidic systems before actual fabrication commences. In the process, the information required for the micro-stereolithography process is generated automatically. Consequently, complex micro-fluidic systems can be fabricated in a single process, thereby avoiding the need for additional assembly or bonding processes. Using the developed process, several examples were fabricated.

  • PDF

Design of The Micro Fluidic Heat Flux Sensor (유동형 미세 열유속 센서의 설계)

  • Kim, Jung-Kyun;Cho, Sung-Cheon;Lee, Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.138-145
    • /
    • 2009
  • A suspended membrane micro fluidic heat flux sensor that is able to measure the heat flow rate was designed and fabricated by a complementary-metal-oxide-semiconductor-compatible process. The combination of a thirty-junction gold and nickel thermoelectric sensor with an ultralow noise preamplifier, low pass filter, and lock-in amp has enabled the resolution of 50 nW power and provides the sensitivity of $11.4\;mV/{\mu}W$. The heater modulation method was used to eliminate low frequency noises from sensor output. It is measured with various heat flux fluid of DI-water to test as micro fluidic application. In order to estimate the heat generation of samples from the output measurement of a micro fluidic heat-flux sensor, a methodology for modeling and simulating electro-thermal behavior in the micro fluidic heat-flux sensor with integrated electronic circuit is presented and validated. The electro-thermal model was constructed by using system dynamics, particularly the bond graph. The electro-thermal system model in which the thermal and the electrical domain are coupled expresses the heat generation of samples converts thermal input to electrical output. The proposed electro-thermal system model shows good agreement with measured output voltage response in transient state and steady-state.

Fabrication of Micro-fluidic Channels using a Flexible and Rapid Surface Micro-machining Technique (유연하고 신속한 표면미세가공기술을 이용한 Micro-fluidic Channel 제작)

  • 김진산;성인하;김대은
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.603-607
    • /
    • 2002
  • Recently, the need leer transporting and manipulating minute amount of fluids in microscale channels (so-called micro-fluidics) has been increasing, especially in biotechnology and biochemical processing. This work demonstrates that the mechano-chemical process which consists of mechanical abrasive action combined with chemical process can be used to fabricate micro-fluidic channels more rapidly and cost effectively than other methods. In this work, capillary filling of fluids in micro-channels was investigated by theoretical approaches and experiments. From the experimental results, it is expected that a complex micro-fluidic system can be fabricated using the micro- fabrication technique and microsystem packaging method described in this work.

  • PDF

A Study on Fabrication of Fluidic Devices using Stereolithography Technology (Stereolithography 기술을 이용한 유체소자 제작에 관한 연구)

  • Lee Young Tae;Bae Yong Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.188-195
    • /
    • 2004
  • In this paper, we fabricated fluidic devices like micro-channel, pump, mixer and particular gas separator with the technology of stereolithouaphy using RP(rapid-prototyping). The fabricated fluidic devices are expected to be applied to develop Lab-on-a chip type liquid analyzer. Stereolithography technology seems effective for fabricating MEMS(Micro Electro Mechanical System) with complicated structure because it makes three dimensional fabrication possible but, exclusive devices are needed to be developed fur fabricating even more microscopic MEMS structure.

Micro Fluidic Component for a Blood Analysis System (혈액분석기용 유체소자의 설계기술 개발)

  • Kim, Jae Yun;Kim, Duckjong;Heo, Pil Woo;Park, Sang-Jin;Yoon, Eui Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.754-760
    • /
    • 2004
  • The miniaturization and integration are trend of modern blood analyses. Micro-Bio-Fluidics plays an important role in a micro blood analysis system. In this paper, analysis and design technology for blood analysis system is presented. Numerical simulations of a blood flow in micro separator and reservoir are conducted. As a result, we suggest on-chip micro separator, which performed plasma separation from whole blood in micro channels.

  • PDF

Development of an Assembly-free Process for Micro-stereolithography Technology (마이크로 광 조형기술에서의 통합성형공정의 개발)

  • 이인환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.182-187
    • /
    • 2004
  • As it is difficult to construct a micro-fluidic system composed of micro-mixers, micro-channels and/or micro-chambers in a single process, an assembly process is typically used. The assembling and bonding of micro-parts, however, introduces other problems. In this work, a virtual assembly process was developed that can be used to design various micro-systems before actual fabrication commences. In the process, the information required for the micro-stereolithography process is generated automatically. Consequently, complex micro-fluidic systems can be fabricated in a single process, thereby avoiding the need fur additional assembly or bonding processes. Using the developed process, several examples were fabricated.

Design and Fabrication of a Micro PZT Cantilever Array Actuator for Applications in Fluidic Systems

  • Kim Hyonse;In Chihyun;Yoon Gilho;Kim Jongwon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1544-1553
    • /
    • 2005
  • In this article, a micro cantilever array actuated by PZT films is designed and fabricated for micro fluidic systems. The design features for maximizing tip deflections and minimizing fluid leakage are described. The governing equation of the composite PZT cantilever is derived and the actuating behavior predicted. The calculated value of the tip deflection was 15 ${\mu}m$ at 5 V. The fabrication process from SIMOX (Separation by oxygen ion implantation) wafer is presented in detail with the PZT film deposition process. The PZT films are characterized by investigating the ferroelectric properties, dielectric constant, and dielectric loss. Tip deflections of 12 ${\mu}m$ at 5 V are measured, which agreed well with the predicted value. The 18 ${\mu}l/s$ leakage rate of air was observed at a pressure difference of 1000 Pa. Micro cooler is introduced, and its possible application to micro compressor is discussed.

A Multi-chip Microelectrofluidic Bench for Modular Fluidic and Electrical Interconnections (전기 및 유체 동시접속이 가능한 멀티칩 미소전기유체통합벤치의 설계, 제작 및 성능시험)

  • Chang Sung-Hwan;Suk Sang-Do;Cho Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.373-378
    • /
    • 2006
  • We present the design, fabrication, and characterization of a multi-chip microelectrofluidic bench, achieving both electrical and fluidic interconnections with a simple, low-loss and low-temperature electrofluidic interconnection method. We design 4-chip microelectrofluidic bench, having three electrical pads and two fluidic I/O ports. Each device chip, having three electrical interconnections and a pair of two fluidic I/O interconnections, can be assembled to the microelectofluidic bench with electrical and fluidic interconnections. In the fluidic and electrical characterization, we measure the average pressure drop of $13.6{\sim}125.4$ Pa/mm with the nonlinearity of 3.1 % for the flow-rates of $10{\sim}100{\mu}l/min$ in the fluidic line. The pressure drop per fluidic interconnection is measured as 0.19kPa. Experimentally, there are no significant differences in pressure drops between straight channels and elbow channels. The measured average electrical resistance is $0.26{\Omega}/mm$ in the electrical line. The electrical resistance per each electrical interconnection is measured as $0.64{\Omega}$. Mechanically, the maximum pressure, where the microelectrofluidic bench endures, reaches up to $115{\pm}11kPa$.

Fabrication of Three-Dimensional Micro Optical and Fluidic System Using Dual Stage Nanostereolithography Process (이중 스테이지를 이용한 대면적 3차원 광/유체 마이크로 디바이스 제작에 관한 연구)

  • Lim, Tae Woo;Yang, Dong-Yol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.10
    • /
    • pp.552-557
    • /
    • 2015
  • The nanostereolithography process using a femtosecond laser has been shown to have strong merits for the direct fabrication of 2D/3D micro structures. In addition, a femtosecond laser provides efficient tools for precise micromachining owing to the advantages of a small and feeble heat effect zone. In this paper, we report an effective fabrication process of 3D micro optical and fluidic devices using nanostereolithography process composed of a dual stage system. Process conditions for additive and subtractive fabrication are examined. The Piezo stage scanning system is used for 3D micro-fabrication in unit area of sub-mm scale, and the motor stage is employed in fabrication on the scale of several mm. The misalignment between the pizeo- and motor- stages is revised through rotational transformation of CAD data in the unit domain. Here, the effectiveness of the proposed process is demonstrated through examples using 3D optical and microfluidic structures.