• Title/Summary/Keyword: Micro Finite Element Analysis

Search Result 410, Processing Time 0.029 seconds

Vibration Analysis for Gimbal Structure of a Micro Wave Seeker(II) : Finite Element Analysis (마이크로 웨이브 탐색기의 김발 구조물 진동해석(II) : 유한요소해석)

  • Chang, Young-Bae;Jun, Hong-Gul;Lee, Sock-Kyu;Youn, Jae-Youn;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.514-518
    • /
    • 2000
  • Micro wave seeker consists of a gimbal structure, a antenna and many RF parts. And Missile's propelling powers excite a gimbal structure, a antenna and many RF parts. Therefore, We must inquire into external forces to act on a micro wave seeker before everything. We must inquire into design parameters and then estimate dynamic characteristics of a gimbal structure with a finite element model to reflect part's characteristics for design for a gimbal structure in consideration of vibration features. In this paper, a gimbal structure of a micro wave seeker is modeled in finite element method and then updated by using the experimental modal data. Before we make a finite element model of a gimbal structure of a micro wave seeker, we make a finite element model of a sub-structure and compare with the experimental modal data.

  • PDF

Choice of Thresholding Technique in Micro-CT Images of Trabecular Bone Does Not Influence the Prediction of Bone Volume Fraction and Apparent Modulus

  • Kim, Chi-Hyun;Kim, Byung-Gwan;Guo, X. Edward
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.174-177
    • /
    • 2007
  • Trabecular bone can be accurately represented using image-based finite element modeling and analysis of these bone models is widely used to predict their mechanical properties. However, the choice of thresholding technique, a necessary step in converting grayscale images to finite element models which can thus significantly influence the structure of the resulting finite element model, is often overlooked. Therefore, we investigated the effects of thresholding techniques on micro-computed tomography (micro-CT) based finite element models of trabecular bone. Three types of thresholding techniques were applied to micro-CT images of trabecular bone which resulted in three unique finite element models for each specimen. Bone volume fractions and apparent moduli were predicted for each model and compared to experimental results. Our findings suggest that predictions of apparent properties agree well with experimental measurements regardless of the choice of thresholding technique in micro CT images of trabecular bone.

Finite Element Analysis of Micro Forming Process by Crystal Plasticity (결정소성학에 의한 미세 성형공정의 유한요소해석)

  • Kim H. K.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.209-212
    • /
    • 2001
  • It is known that the mim forming processes show somewhat different phenomena compared with the conventional metal forming processes, namely, the size effect, enhanced friction effect and etc. Such typical phenomena, however, are not predicted by the conventional finite element analysis, which has been an efficient numerical tool to predict the metal forming processes. It is due to the fact that the constitutive relations used does not describe the microstructural characteristics of the materials. In the present investigation, the finite element formulation using the rate-dependent rigid plastic crystal plasticity model of the face-centered cubic materials is conducted to predict the micro mechanical behaviors during the mim forming processes. The finite element analysis, however, provides mesh-dependent solutions for the intragranular deformations. Therefore, the couple stress energy is additionally introduced into the variational principle and formulated within the framework of the rigid plastic finite element method to obtain mesh-independent solutions. Micro deformations of single crystal and bicrystal with various orientations are calculated to show the potential of the developed formulation.

  • PDF

Finite Element Analysis on the Springback in the Forging-Bending of Metal Micro-Wire (금속 마이크로 와이어의 단조-굽힘 성형에서 스프링백에 관한 해석적 연구)

  • Kang, J.J.;Hong, S.K.;Jeon, B.H.;Pyo, C.R.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.649-656
    • /
    • 2008
  • Springback is one of factors affecting precision in metal forming. Its effect is particularly prominent in bending process. In this study, bending and forging process are used in order to manufacture a micro spring with two bending region from $60{\mu}m$ diameter wire. Springback in the process lowers the precision of the micro spring. Overbending for springback compensation has wide usage in a general way. However, this method requires repeated modifications of press dies until the tolerance is allowable, which causes that production cost and time increase. In this paper, we analyzed the mechanism of springback in the forming process of the micro spring using finite element method. In addition, a simple method to control springback without modifying dies was proposed by performing numerical analysis with various parameters.

A Finite Element Analysis for the Characteristics of Temperature and Stress in Micro-machining Considering the Size Effect (크기효과가 고려된 미소절삭시의 온도 및 응력특성에 관한 유한요소해석)

  • 김국원;이우영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.128-139
    • /
    • 1998
  • In this paper, a finite element method for predicting the temperature and stress distributions in micro-machining is presented. The work material is oxygen-free-high-conductivity copper(OFHC copper) and its flow stress is taken as a function of strain, strain rate and temperature in order to reflect realistic behavior in machining process. From the simulation, a lot of information on the micro-machining process can be obtained; cutting force, cutting temperature, chip shape, distributions of temperature and stress, etc. The calculated cutting force was found to agree with the experiment result with the consideration of friction characteristics on chip-tool contact region. Because of considering the tool edge radius, this cutting model using the finite element method can analyze the micro-machining with the very small depth of cut, almost the same size of tool edge radius, and can observe the 'size effect' characteristic. Also the effects of temperature and friction on micro-machining were investigated.

  • PDF

A study on the effect of cutting parameters of micro metal cutting mechanism using finite element method (유한유쇼법을 이용한 미소절삭기구의 절삭인자 규명에 관한 연구)

  • Hwang, Joon;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.206-215
    • /
    • 1993
  • The finite element method is applied to analyze the mechanism of metal cutting, especially micro metal cutting. This paper introduces some effects, such as constitutive deformation laws of workpiece material, friction of tool-chip contact interfaces, tool rake angle and also simulate the cutting process, chip formation and geometry, tool-chip contact, reaction force of tool. Under the usual plane strain assumption, quasi-static analysis were performed with variation of tool-chip interface friction coefficients and tool rake angles. In this analysis, cutting speed, cutting depth set to 8m/sec, 0.02mm, respectively. Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction forces on tool. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

  • PDF

FEA Simulation for Practical Behaviors of Electrostatic Micro Actuator (마이크로 액추에이터의 실제 거동에 대한 FEA 시뮬레이션)

  • Lee Yang Chang;Lee Joon Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.115-121
    • /
    • 2005
  • Micromachines are extremely novel artifacts with a variety of special characteristics. Utilizing their tiny dimensions ranging roughly from 10 to $10^3$ micro-meters, the micromachines can perform tasks in a revolutionary manner that would be impossible for conventional artifacts. Micromachines are in general related to various coupled physical phenomena. They are required to be evaluated and designed considering the coupled phenomena. This paper describes finite element analysis (FEA) simulation of practical behaviors for the micro actuator. Especially, electric field modeling in micro actuators has been generally restricted to in-plane two-dimensional finite element analysis because of the complexity of the micro actuator geometry. However, in this paper, the actual three-dimensional geometry of the micro actuator is considered. The starting torque obtained from the in-plane two-dimensional analytical solutions were compared with that of the actual three-dimensional FE analysis results. The starting torque is proportional to $V^2$, and that the two-dimensional analytical solutions are larger than the three- dimensional FE ones. It is found that the evaluation of micro actuator has to be considered electrical leakage phenomenon.

An Evaluation of Machining Characteristics in Micro-scale Milling Process by Finite Element Analysis and Machining Experiment (유한요소해석과 가공실험을 통한 마이크로 밀링가공의 가공특성평가)

  • Ku, Min-Su;Kim, Jeong-Suk;Kim, Pyeoung-Ho;Park, Jin-Hyo;Kang, Ik-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.101-107
    • /
    • 2011
  • Analytical solution of micro-scale milling process is presented in order to suggest available machining conditions. The size effect should be considered to determine cutting characteristics in micro-scale cutting. The feed per tooth is the most dominant cutting parameter related to the size effect in micro-scale milling process. In order to determine the feed per tooth at which chips can be formed, the finite element method is used. The finite element method is employed by utilizing the Johnson-Cook (JC) model as a constitutive model of work material flow stress. Machining experiments are performed to validate the simulation results by using a micro-machining stage. The validation is conducted by observing cutting force signals from a cutting tool and the conditions of the machined surface of the workpiece.