• 제목/요약/키워드: Micro Filler

검색결과 105건 처리시간 0.025초

다량의 산업부산물을 활용한 슬러리계 되메움 재료의 물성 평가 (Properties Evaluation of Controlled Low Strength Materials Used Industrial by-Products of A Great Quantity)

  • 료효개;김동훈
    • 한국건축시공학회지
    • /
    • 제20권5호
    • /
    • pp.441-448
    • /
    • 2020
  • CLSM은 다량의 산업부산물 및 폐기물을 안전하게 유효 활용할 수 있는 슬러리계의 되메움 재료이다. 본 연구에서는 FA 및 모래의 대체 재료로써 GBFS 및 FNS, GF의 적용가능성을 평가함은 물론 나아가 도로 및 노면 하부, 싱크홀 및 포토홀 등의 되메움 및 공동충전재로서의 현장적용을 위한 품질기준을 제안하고자 하였다. 이를 통해 선진외국 대비 재생자원의 유효 재활용을 향상시킴은 물론 국내에서의 CLSM 확대적용 및 보급을 위한 기초적인 자료로 제안하고자 하였다.

차체 구조용 에폭시 접착제의 접합부 특성에 미치는 Zirconate 첨가효과 (The Effect of Zirconate Addition on the Joint Properties of Epoxy Adhesive for Car Body Assembly)

  • 정은택;이혜림;이소정;임창용;서종덕;김목순;김준기
    • Journal of Welding and Joining
    • /
    • 제31권5호
    • /
    • pp.71-76
    • /
    • 2013
  • The effect of zirconate having - NH functional group on the T-peel and lap shear strength of $CaCO_3$ containing structural epoxy adhesive for car body assembly was investigated. Curing behavior of epoxy adhesive samples were investigated by differential scanning calorimeter (DSC) techniques. The addition of zirconate up to 7.5 phr did not affect the curing mechanism of epoxy adhesive. While the small amount of zirconate addition less than 1.1 phr increased the cross-linking density, the excess addition of zirconate resulted in the increase of uncross-linked impurity. From the increase of T-peel and lap shear strength and the change of fracture mode from the adhesive failure to the mixed one, it was considered that the small addition of zirconate was effective in improving the adhesion strength of epoxy adhesive to the adherend and inorganic filler surfaces. The formation of uncross-linked impurity with the excess addition of zirconate was considered to decrease the joint strength by decreasing the cohesive strength of the cured epoxy.

상아질에 대한 저점도 복합레진의 자가접착에 관한 연구 (SELF-ADHESION OF LOW-VISCOSITY COMPOSITES TO DENTIN SURFACE)

  • 조태희;최경규;박상혁;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제28권3호
    • /
    • pp.209-221
    • /
    • 2003
  • The objectiveness of this study was to evaluate whether low-viscosity composite can bond effectively to dentin surface without bonding resin. The low-viscosity composites being 50wt% filler content were made by the inclusion of bonding resin of two self-etching systems(Cleafil SE Bond, Unifil Bond) varied with contents as 0, 10, 20, 30, 40, 50wt%. Exposed dentin surfaces of extracted 3rd molars are used. Dentin bond strengths were measured. The tests were carried out with a micro-shear device placed testing machine at a CHS of 1mm/min after a low-viscosity composite was filled into an iris cut from micro tygon tubing with internal diameter approximately 0.8mm and height of 1.0mm. 1 Flexural strength and modulus was increased with the addition of bonding resin. 2. Micro-shear bond strength to dentin was improved according to content of bonding resin irrespective of applying or not bonding resin in bonding procedure, and that of Clearfil SE Bond groups was higher than Unifil Bond. 3. There were no significant difference whether use of each bonding resin in bonding procedure for S-40, S-50, U-50(p>0.05). 4. In SEM examination, resin was well infiltrated into dentin after primed with self-etching primer only for S-50 and U-50 in spite of the formation of thinner hybrid layer. Low viscosity composite including some functional monomer may be used as dentin bonding resin without an intermediary bonding agent. It makes a simplified bonding procedure and foresees the possibility of self-adhesive restorative material.

NCP 적용 COB 플립칩 패키지의 신뢰성에 미치는 실리카 필러의 영향 (Effects of silica fillers on the reliability of COB flip chip package using NCP)

  • 이소정;김준기;이창우;김정한;이지환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.158-158
    • /
    • 2008
  • 모바일 정보통신기기를 중심으로 실장모듈의 초소형화, 고집적화로 인해 접속단자의 피치가 점점 미세화 됨에 따라 플립칩 본딩용 접착제에 함유되는 무기충전제인 실리카 필러의 크기도 미세화되고 있다. 본 연구에서는 NCP (non-conductive paste)의 실리카 필러의 크기가 COB(chip-on-board) 플립칩 패키지의 신뢰성에 미치는 영향을 조사하였다. 실험에 사용된 실리카 필러는 Fused silica 3 종과 Fumed silica 3종이며 response surface 실험계획법에 따라 혼합하여 최적의 혼합비를 정하였다. 테스트베드로 사용된 실리콘 다이는 투께 $700{\mu}m$, 면적 5.2$\times$7.2mm로 $50\times50{\mu}m$ 크기의 Au 도금범프를 $100{\mu}m$ 피치, peripheral 방식으로 형성시켰으며, 기판은 패드를 Sn으로 finish 하였다. 기판을 플라즈마 전처리 후 Panasonic FCB-3 플립칩 본더를 이용하여 플립칩 본딩을 수행하였다. 패키지의 신뢰성 평가를 위해 $-40^{\circ}C{\sim}80^{\circ}C$의 열충격시험과 $85^{\circ}C$/85%R.H.의 고온고습시험을 수행하였으며 Die shear를 통한 접합 강도와 4-point probe를 통한 접속저항을 측정하였다.

  • PDF

Micro-computed tomography for assessing the internal and external voids of bulk-fill composite restorations: A technical report

  • Tosco, Vincenzo;Monterubbianesi, Riccardo;Furlani, Michele;Giuliani, Alessandra;Putignano, Angelo;Orsini, Giovanna
    • Imaging Science in Dentistry
    • /
    • 제52권3호
    • /
    • pp.303-308
    • /
    • 2022
  • Purpose: This technical report aims to describe and detail the use of micro-computed tomography for a reliable evaluation of the bulk-fill composite/tooth interface. Materials and Methods: Bulk-fill composite restorations in tooth cavities were scanned using micro-computed tomography to obtain qualitatively and quantitatively valuable information. Two-dimensional information was processed using specific algorithms, and ultimately a 3-dimensional (3D) specimen reconstruction was generated. The 3D rendering allowed the visualization of voids inside bulk-fill composite materials and provided quantitative measurements. The 3D analysis software VG Studio MAX was used to perform image analysis and assess gap formation within the tooth-restoration interface. In particular, to evaluate internal adaptation, the Defect Analysis addon module of VG Studio Max was used. Results: The data, obtained with the processing software, highlighted the presence and the shape of gaps in different colours, representing the volume of porosity within a chromatic scale in which each colour quantitatively represents a well-defined volume. Conclusion: Micro-computed tomography makes it possible to obtain several quantitative parameters, providing fundamental information on defect shape and complexity. However, this technique has the limit of not discriminating materials without radiopacity and with low or no filler content, such as dental adhesives, and hence, they are difficult to visualise through software reconstruction.

Analysis of DC insulation and properties of epoxy/ceramic composites with nanosized ZnO/TiO2 fillers

  • Kwon, Jung-Hun;Kim, Yu-Min;Kang, Seong-Hwa;Kim, Pyung-Jung;Jung, Jong-Hoon;Lim, Kee-Joe
    • Journal of Ceramic Processing Research
    • /
    • 제13권spc2호
    • /
    • pp.332-335
    • /
    • 2012
  • A molded transformer is maintenance-free, which makes it unnecessary to replace the insulating material, like in an oil-filled transformer, because the epoxy, which is a molded insulating resin, does not suffer variations in its insulating performance for heat cycles over a long time, as compared to insulating oil. In spite of these advantages, a molded transformer may still be accessed by the user, which is not good in regards to reliability or noise compared to the oil transformers. In particular, a distrust exists regarding reliability due to the long-term insulating performance. These properties have been studied in regards to the improvement of epoxy composites and molded transformer insulation. There have nevertheless been insufficient investigations into the insulation properties of epoxy composites. In this study, it is a researching of the epoxy for insulating material. In order to prepare the specimens, a main resin, a hardener, an accelerator, and a nano/micro filler were used. Varying amounts of TiO2 and ZnO nano fillers were added to the epoxy mixture along with a fixed amount of micro silica. This paper presents the DC insulation breakdown test, thermal expansion coefficient, and thermal conductivity results for the manufactured specimens. From these results, it has been found that the insulating performance of nano/micro epoxy composites is improved as compared to plain molded transformer insulation, and that nano/micro epoxy composites contribute to the reliability and compactness of molded transformers.

원자로용급 흑연인 IG-110의 파괴특성 (Fracture Properties of Nuclear Graphite Grade IG-110)

  • 한동윤;김응선;지세환;임연수
    • 한국세라믹학회지
    • /
    • 제43권7호
    • /
    • pp.439-444
    • /
    • 2006
  • Artificial graphite generally manufactured by carbonization sintering of shape-body of kneaded mixture using granular cokes as filler and pitch as binder, going through pitch impregnation process if necessary and finally applying graphitization heat treatment. Graphite materials are used for core internal structural components of the High-Temperature Gas-cooled Reactors (HTGR) because of their excellent heat resistibility and resistance of crack progress. The HTGR has a core consisting of an array of stacked graphite fuel blocks are machined from IG-110, a high-strength, fine-grained isotropic graphite. In this study, crack stabilization and micro-structures were measured by bend strength and fracture toughness of isotropic graphite grade IG-110. It is important to the reactor designer as they may govern the life of the graphite components and hence the life of the reactor. It was resulted crack propagation, bend strength, compressive strength and micro-structures of IG-110 graphite by scanning electron microscope and universal test machine.

Study on Recycling of Scraps from Process of Silicon-single-crystal for Semiconductor

  • Lee, Sang-Hoon;Lee, Kwan-Hee;Hiroshi Okamoto
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.705-710
    • /
    • 2001
  • So for the quartz-glassy crucible wastes which was used for pulling up silicon-single-crystal ingot have simply reused for refractory raw-materials, or exhausted. This study is concerned on the advanced recycling-technology that is obtained by the proper micro-particle preparation process in order to fabricate fine amorphous silica filler for EMC (Epoxy Molding Compound). Therefore, this paper will deal with the physical, chemical and thermal pre-treatment process for efficient impurity removal and with the proper micro-particle process for producing the amorphous silicafiller. In view of the results, if the chemical, physical and thermal pre-treatment process for efficient elimination of impurity was passed, the purity of wasted fused glassy crucible is almost equal to the its of first anhydrous quartz glass. Thus, it was understood that this wasted fused glassy crucible was sufficient value of recycling, though it was damaged. When the ingot was fabricated, Phase transformation of crystallization by heat treatment (heat hysteresis phenomenon) was not changed. So, it was understood that as fused silica in the amorphous state, as It is, recycling possibility was very high

  • PDF

Strength and durability of ultra fine slag based high strength concrete

  • Sharmila, Pichaiya;Dhinakaran, Govindasamy
    • Structural Engineering and Mechanics
    • /
    • 제55권3호
    • /
    • pp.675-686
    • /
    • 2015
  • The use of ground granulated blast furnace slag (GGBFS) from steel industries waste is showing perspective application in civil engineering as partial substitute to cement. Use of such waste conserves natural resources and minimizes the space required for landfill. The GGBFS used in the present work is of ultra fine size and hence serves as micro filler. In this paper strength and durability characteristics of ultra fine slag based high strength concrete (HSC) (with a characteristic compressive strength of 50 MPa) were studied. Cement was replaced with ultra fine slag in different percentages of 5, 10, and 15% to study the compressive strength, porosity, resistances against sulfate attack, sorptivity and chloride ion penetration. The experiments to study compressive strength were conducted for different ages of concrete such as 7, 28, 56, and 90 days. From the detailed investigations with 16 mix combinations, 10% ultra fine slag give better results in terms of strength and durability characteristics.

도금 강판 CMT 용접부위의 재료특성평가 (Characterization of Cold Metal Transfer Welding Coated Steel)

  • 송현수;최보성;윤존도;박승태
    • 한국정밀공학회지
    • /
    • 제32권10호
    • /
    • pp.891-896
    • /
    • 2015
  • In order to protect the environment, using light material is becoming more and more attractive within the automobile industry. Aluminum alloys are the best and lightest metallic materials used in the automotive, electron, and aerospace industries. Al alloy and SGARC were joined by cold metal transfer (CMT) welding, using AlSiMn4 as a filler. Results showed that dissimilar metals from the Al 6000 series/SGARC could be successfully joined by CMT under proper processing parameters. The micro-hardness value of 125Hv was obtained at an interface.