• Title/Summary/Keyword: Micro Fabrication Technology

Search Result 562, Processing Time 0.031 seconds

Fabrication and Properties of Ni and Ni-W Electroplated Molds Using LIGA-like Process for Replication of Micro Components (LIGA-like 공정을 이용한 마이크로 부품 복제용 Ni과 Ni-W 금형 제조 및 특성)

  • Hwang, W.S.;Park, J.S.;Kang, Y.C.;Cho, J.W.;Park, S.S.;Lee, I.G.;Kang, S.G.
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.6-10
    • /
    • 2003
  • Electroplated Ni and Ni-W micro-molds using LIGA-like process for replication of micro-components such as microfluidic parts and micro optical parts have been investigated. In general, it is hard to produce micro-parts using conventional mechanical processes. Micro-mold formed by LIGA-like process could fabricate micro-parts with high aspect ratio. In this paper, fabrication and properties of electroplated Ni molds with varying applied current types as well as those of Ni-W molds were investigated. Ni molds fabricated under pulse-reverse current showed the highest hardness value of about 160 Hv. Ni-W molds showed the hardness of about 500 Hv which was much harder than that of Ni electroplated molds. The above results suggested that high quality micro-molds could be fabricated by using Ni electroplating of pulse-reverse type for core molds and sequential Ni-W alloys coating.

Microlens Micro V-groove Fabrication by the Modified LIGA Process (변형 DEEP X-ray를 이용한 마이크로 렌즈 및 V-groove 제작)

  • 이정아;이승섭;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.290-295
    • /
    • 2004
  • Mircolens and microlens V-groove are realized using a novel fabrication technology based on the exposure of a resist, usually PMMA, to deep X-rays and subsequent thermal treatment and inclined deep X-ray lithography, respectively. The fabrication technology is very simple and produces microlenses and microlens V-groove with good surface roughness of several nm. The molecular weight and glass transition temperature of PMMA is reduced when it is irradiated with deep X-rays. The microlenses were produced through the effects of volume change, surface tension, and reflow during thermal treatment of irradiated PMMA. Microlenses were produced with diameters ranging from 30 to $1500\mu\textrm{m}$. The surface X-ray mask is also fabricated to realize microlens arrays on PMMA sheet with a large area. The size of the micro V-groove is fabricated in the range of 12~$60\mu\textrm{m}$.

Fabrication of Piezoelectric Micro Bending Actuators Using Sol-Gel Thick PZT films

  • Park, Joon-Shik;Yang, Seong-Jun;Park, Kwang-Bum;Yoon, Dae-Won;Park, Hyo-Derk;Kang, Sung-Goon;Lee, Nak-Kyu;Na, Kyoung-Hoan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.3
    • /
    • pp.1-4
    • /
    • 2004
  • Fabrication and electrical and mechanical properties of piezoelectric micro bending actuators (PMBA) using sol-gel-multi-coated thick PZT films and MEMS processes were investigated. PMBA could be used for design and fabrication of micro fluidic devices, for example, micro-pumps, micro dispensers, and so on. PMBA were fabricated using 2 um thick PZT films on Pt (350 nm)/$SiO_2$ (500 nm)/Si ($300\mu\textrm{m}$) substrates and MEMS processes. 7 types of PMBA were fabricated with areas of silicon diaphragms, PZT films and top electrodes. When the sizes of silicon diaphragms, PZT films and Pt top electrodes were reduced from 3000$\times$$1389\mu\textrm{m}$, 4000$\times$$1000\mu\textrm{m}$ and 4000$\times$$900\mu\textrm{m}$ down to 14%, 14% and 11 % of them, respectively, the center displacements of PMBA were decreased from 0.68 um to 0.10 um at 5 Hz and 12 Vpp. So, PMBA with large areas showed larger displacements than PMBA with small areas and experimental results were also good agreement with the plate and shell theory.

  • PDF

Dual Surface Modifications of Silicon Surfaces for Tribological Application in MEMS

  • Pham, Duc-Cuong;Singh, R. Arvind;Yoon, Eui-Sung
    • KSTLE International Journal
    • /
    • v.8 no.2
    • /
    • pp.26-28
    • /
    • 2007
  • Si(100) surfaces were topographically modified i.e. the surfaces were patterned at micro-scale using photolithography and DRIE (Deep Reactive Ion Etching) fabrication techniques. The patterned shapes included micro-pillars and microchannels. After the fabrication of the patterns, the patterned surfaces were chemically modified by coating a thin DLC film. The surfaces were then evaluated for their friction behavior at micro-scale in comparison with those of bare Si(100) flat, DLC coated Si(100) flat and uncoated patterned surfaces. Experimental results showed that the chemically treated (DLC coated) patterned surfaces exhibited the lowest values of coefficient of friction when compared to the rest of the surfaces. This indicates that a combination of both the topographical and chemical modification is very effective in reducing the friction property. Combined surface treatments such as these could be useful for tribological applications in miniaturized devices such as Micro-Electro-Mechanical-Systems (MEMS).

Development of micro-stereolithography system for the fabrication of three-dimensional micro-structures (3 차원 형상의 미소제품 제작을 위한 마이크로 광 조형시스템의 개발)

  • 이인환;조윤형;조동우;이응숙
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.186-194
    • /
    • 2004
  • Micro-stereolithography is a newly proposed technology as a means that can fabricate a 3D micro-structure of free form. It makes a 3D micro-structure by dividing the shape into many slices of relevant thickness along horizontal surfaces, hardening each layer of slice with a focused laser beam, and stacking them up to a desired shape. In this technology, differently from the conventional stereolithography, scale effect is dominant. To realize micro-stereolithography technology, we developed the micro-stereolithography apparatus which is composed of an Ar+ laser, x-y-z stages. controllers. optical devices and scan path generation software. Related processes were developed, too. Using the system, a number of micro-structures were successfully fabricated. Some of these samples are shown for prove this system. Laser scan path generation algorithm and software considering photopolymer solidification phenomena as well as given 3D model were developed. Sample fabrication of developed software shows relatively high dimensional accuracy compared to the uncompensated result.

A Study on Lenticular Lens Mold Fabrication by Shaping (세이핑에 의한 렌티큘러 렌즈 금형 가공에 관한 연구)

  • Je T. J.;Lee E. S.;Shim Y. S.;Kim E. Z.;Na K. H.;Choi D. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.245-250
    • /
    • 2005
  • Recently, micro machining technology for high precision mold becomes more interested for mass production of high performance optical parts micro-grooved on the surface, which is under very active development due to its effectiveness in the view point of optical performance. Mechanical micro machining technology now has more competitiveness on lithography, MEMS or LIGA processes which have some problems to fabricate especially cylinder type of groove in such as lenticular lens for illumination angle modulation system. In this study. a lenticular lens mold with U-type micro groove is fabricated making utilizing of the benefit of the mechanical micro machining technology. A shaping machining process is adapted using 3 axis degree of freedom micro machining system and single crystal natural diamond tool. A brass and a electroless nickel materials are used for mold fabrication. Machining force, chip shape and machined surface are investigated from the experiment and an optimal machining condition is found based on the examined problems from the micro cutting process.

Demonstration of Robust Micromachined Jet Technology and Its Application to Realistic Flow Control Problems

  • Chang Sung-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.554-560
    • /
    • 2006
  • This paper describes the demonstration of successful fabrication and initial characterization of micromachined pressure sensors and micromachined jets (microjets) fabricated for use in macro flow control and other applications. In this work, the microfabrication technology was investigated to create a micromachined fluidic control system with a goal of application in practical fluids problems, such as UAV (Unmanned Aerial Vehicle)-scale aerodynamic control. Approaches of this work include: (1) the development of suitable micromachined synthetic jets (microjets) as actuators, which obviate the need to physically extend micromachined structures into an external flow; and (2) a non-silicon alternative micromachining fabrication technology based on metallic substrates and lamination (in addition to traditional MEMS technologies) which will allow the realization of larger scale, more robust structures and larger array active areas for fluidic systems. As an initial study, an array of MEMS pressure sensors and an array of MEMS modulators for orifice-based control of microjets have been fabricated, and characterized. Both pressure sensors and modulators have been built using stainless steel as a substrate and a combination of lamination and traditional micromachining processes as fabrication technologies.

Rapid Fabrication of Micro Lens Array by 355nm UV Laser Irradiation (355nm UV 레이저를 이용한 마이크로 렌즈 어레이 쾌속 제작)

  • Je, Soon-Kyu;Park, Kang-Su;Oh, Jae-Yong;Kim, Kwang-Ryul;Park, Sang-Hoo;Go, Cheong-Sang;Shin, Bo-Sung
    • Laser Solutions
    • /
    • v.11 no.2
    • /
    • pp.26-32
    • /
    • 2008
  • Micro lens array (MLA) is widely used in information technology (IT) industry fields, for examples such as a projection display, an optical power regulator, a micro mass spectrometer and for medical appliances. Recently, MLA have been fabricated and developed by using a reflow method, micro etching, electroplating, micromachining and laser local heating. Laser local thermal-expansion (LLTE) technology demonstrates the formation of microdots on the surface of polymer substrate, in this paper. We have also investigated the new direct fabrication method of placing the MLA on the surface of a SU-8 photoresist layer. We have obtained the 3D shape of the micro lens processed by UV laser irradiation and have experimentally verified the optimal process conditions.

  • PDF

Fabrication of low power NO micro gas senor by using CMOS compatible process (CMOS공정 기반의 저전력 NO 마이크로가스센서의 제작)

  • Shin, Han-Jae;Song, Kap-Duk;Lee, Hong-Jin;Hong, Young-Ho;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • Low power bridge type micro gas sensors were fabricated by micro machining technology with TMAH (Tetra Methyl Ammonium Hydroxide) solution. The sensing devices with different heater materials such as metal and poly-silicon were obtained using CMOS (Complementary Metal Oxide Semiconductor) compatible process. The tellurium films as a sensing layer were deposited on the micro machined substrate using shadow silicon mask. The low power micro gas sensors showed high sensitivity to NO with high speed. The pure tellurium film used micro gas sensor showed good sensitivity than transition metal (Pt, Ti) used tellurium film.

Fabrication and Sensorization of a Superelastic Alloy Microrobot Gripper using Piezoelectric Polymer Sensors (초탄성 마이크로 그리퍼의 제작 및 압전폴리머 센서를 이용한 센서화)

  • 김덕호;김병규;강현재;김상민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.251-255
    • /
    • 2003
  • This paper presents the design, fabrication, and calibration of a piezoelectric polymer-based sensorized microgripper. Electro discharge machining technology is employed to fabricate super-elastic alloy based micro gripper. It is tested to present improvement of mechanical performance. For integration of force sensor on the micro gripper, the sensor design based on the piezoelectric polymer PVDF film and fabrication process are presented. The calibration and performance test of force sensor integrated micro gripper are experimentally carried out. The force sensor integrated micro gripper is applied to perform fine alignment tasks of micro opto-electrical components. It successfully supplies force feedback to the operator through the haptic device and plays a main role in preventing damage of assembly parts by adjusting the teaching command.

  • PDF