• 제목/요약/키워드: Micro Electrical Discharge Machining

검색결과 75건 처리시간 0.025초

실리콘고무형과 전자기파에 의한 PDP격벽의 성형에 관한 연구 (A Study on Plasma Display Panel Barrier Rib Fabrication by Silicone Rubber Tooling and electromagnetic Wave)

  • 정해도;손재혁;조인호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.20-23
    • /
    • 2001
  • Plasma Display Panel(PDP) is a type of flat panel display utilizing the light emission produced by gas discharge. Barrier Ribs of PDP separating each sub-pixel prevents optical and electrical crosstalks from adjacent sub-pixels. The mold for forming the barrier ribs has been newly researched to overcome the disadvantages of conventional manufacturing processes such as screen printing, sand-blasting and photosensitive glass methods. The mold for PDP barrier ribs have stripes of micro grooves transferring glass-material wall. In this paper, Stripes of grooves of which width 48${\mu}{\textrm}{m}$, depth 124$\mu\textrm{m}$ , pitch 274$\mu\textrm{m}$ was acquired by machining of single crystal silicon with dicing saw blade. Maximum roughness of the bottom of the grooves was 59.6nm Ra in grooving Si. Barrier ribs were formed with silicone rubber mold, which is transferred from grooved Si forming hard mold. Silicone rubber mold has the elasticity, which enable to accommodate the waveness of lower glass plate of PDP. The methods assisted by the microwave and UV was adopted for reducing the forming time of glass paste.

  • PDF

자장 여과 아크 이온빔 식각 공정을 이용한 WC-Co 및 SCM415 금속 소재 표면 구조 제어 연구 (Surface Modification of WC-Co and SCM415 by the Ion Bombardment Process of Filtered Vacuum Arc Plasma)

  • 이승훈;윤성환;김도근;권정대;김종국
    • 한국표면공학회지
    • /
    • 제43권2호
    • /
    • pp.80-85
    • /
    • 2010
  • The surfaces of WC-Co and SCM415 were etched to form a micro size protrusion for oil based ultra low friction applications using an ion bombardment process in a filtered vacuum arc plasma. WC-Co species showed that a self-patterned surface was available by the ion bombarding process due to the difference of sputtering yield of WC and Co. And the increasing rate of roughness was 0.6 nm/min at -600 V substrate bias voltage. The increasing rate of roughness of SCM415 species was 1.5 nm/min at -800 V, but the selfpatterning effect as shown in WC-Co was not appeared. When the SCM415 species pretreated by electrical discharge machining is etched, the increasing rate of roughness increased from 1.5 nm/min to 40 nm/min at -800 V substrate bias voltage and the uniform surface treatment was available.

PDP 격벽 성형용 몰드 제작과 성형에 대한 연구 (A Study on Mold Fabrication and Forming for PDP Barrier Ribs)

  • 조인호;정상철;정해도;손재혁
    • 한국정밀공학회지
    • /
    • 제18권5호
    • /
    • pp.171-176
    • /
    • 2001
  • Plasma Display Panel(PDP) is a type of flat panel display utilizing the light emission produced by gas discharge. Barrier Ribs of PDP separating each sub-pixel prevents optical and electrical crosstalks from adjacent sub-pixels. Mold for forming barrier ribs has been newly researched to overcome the disadvantages of conventional manufacturing process such as screen printing, sand-blasting and photosensitive glass methods. Mold for PDP barrier ribs have stripes of micro grooves transferring glass-material wall. In this paper, Stripes of grooves of which width 48${\mu}{\textrm}{m}$ and 270${\mu}{\textrm}{m}$, depth 124${\mu}{\textrm}{m}$, pitch 274${\mu}{\textrm}{m}$ was acquired by machining hard and brittle materials of WC, Silicon, Alumina with dicing saw blade. Maximum roughness of the bottom and sidewall of the grooves was respectively 120nm, 287nm in grooving WC. Maximum tilt angle caused by difference between upper-most width and lower-most width was 2$^{\circ}$. Maximum Radius of bottom curvatures was 7.75${\mu}{\textrm}{m}$. This results satisfies the specification for barrier ribs of 50 inch XGA PDP if the groove form of mold was fully transferred to the barrier ribs. Barrier ribs were formed with Silicone rubber mold, which is transferred from grooved hard materials. Silicone rubber mold has elasticity accommodating the waveness of lower glass plate of PDP.

  • PDF

미세 방전가공 기계 구조를 위한 복합재료-포움 샌드위치 구조 설계에 관한 파라메트릭 연구 (Parametric Study on Design of Composite-Foam Sandwich Structures for Micro EDM Machine tool structures)

  • 김대일;장승환
    • Composites Research
    • /
    • 제19권2호
    • /
    • pp.13-19
    • /
    • 2006
  • 본 논문에서는 미세 방전가공(Electrical Discharge Machining; EDM) 기계를 위한 샌드위치 구조를 설계하기 위해 복합재료의 적층 순서, 두께, 그리고 리브의 형상 등을 고려한 파라메트릭 연구를 수행하였다. 샌드위치 구조는 면재인 섬유강화 복합재료와 심재인 레진 콘크리트 및 고분자 포움으로 이루어졌다. 컬럼은 정적 굽힘강성과 비굽힘강성을 높이기 위해 십자 리브를 가진 형상으로 설계하였으며, 적층 순서와 두께를 조절하였다. 베드의 경우 양방향의 강성을 동시에 향상시키기 위해 적층 순서와 리브 형상을 조절하였다. 최적의 고강성을 얻기 위하여 리브의 두께와 면재의 두께 등 설계 파라메터의 최적치를 제안하였다. 각 설계 파라메터의 변화에 따른 구조의 정적, 동적 강성의 변화를 확인하기 위해 유한요소해석을 수행하였으며, 진동 실험을 통하여 각 요소의 고유진동수와 감쇠비를 측정하여 비교하였다. 이러한 결과로부터 고정밀 미세 방전가공 기계 구조를 위한 최적의 형상조건을 제안하였다.

몰드와 전자기파에 의한 PDP격벽의 성형에 관한 연구 (A Study on Plasma Display Panel Barrier Rib Fabrication by Mold and Electromagnetic Wave)

  • 손재혁;임용관;정영대;정성일;정해도
    • 한국정밀공학회지
    • /
    • 제19권6호
    • /
    • pp.176-183
    • /
    • 2002
  • Plasma Display Panel(PDP) is a type of flat panel display utilizing the light emission produced by gas discharge. Barrier Ribs of PDP separating each sub-pixel prevents optical and electrical crosstalks from adjacent sub-pixels. The mold for forming the barrier ribs has been newly researched to overcome the disadvantages of conventional manufacturing processes such as screen printing, sand-blasting and photosensitive glass methods. The mold for PDP barrier ribs have stripes of micro grooves transferring glass-material wall. In this paper , Stripes of grooves of which width 48$\mu$m, depth 124$\mu$m , pitch 274$\mu$m was acquired by machining of single crystal silicon with dicing saw blade. Maximum roughness of the bottom of the grooves was 59.6 nm Ra in grooving Si. Barrier ribs were farmed with silicone rubber mold, which is transferred from grooved Si forming hard mold. Silicone rubber mold has the elasticity, which enable to accommodate the waviness of lower glass plate of PDP. The methods assisted by the microwave and UV was adopted for reducing the forming time of glass paste.