• 제목/요약/키워드: Micro ECM

검색결과 40건 처리시간 0.021초

방전 가공과 전해 가공을 이용한 미세 가공 (Micro Machining by EDM and ECM)

  • 전동훈;김보현;주종남
    • 한국정밀공학회지
    • /
    • 제23권10호
    • /
    • pp.52-59
    • /
    • 2006
  • Micro electrical discharge machining (EDM) and micro electrochemical machining (ECM) were studied for the fabrication of micro structures. Micro EDM has been used to machine micro structures from metals. However, since the tool wear is inevitable during the machining, the tool wear is drawback for the precision machining. Micro ECM is also used for micro machining and produces better surface quality than that of micro EDM. Moreover, since tool electrodes are not worn out, micro ECM is suitable for the precision micro machining. However, the machining rate is lower than that of micro EDM. In this paper, therefore, the hybrid machining process which uses micro EDM as roughing and micro ECM as finishing is introduced. By using this hybrid machining, a hemisphere with $100\;{\mu}m$ radius was fabricated and the efficiency of the process was investigated experimentally.

양극분극곡선을 미용한 미세 전해가공 (Micro Electrochemical Machining using Anodic Polarization Curve)

  • 최영수;강성일;전종업;박규열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.999-1002
    • /
    • 2002
  • In this research, the mechanism of micro-ECM was investigated with potentiodynamic method and the optimal condition for micro-ECM was selected by voltage-current-time curve with potentiostatic method. From the experimental result. it was confirmed that anodic voltage curve could be used very effectively for determining the optimal condition of micro-ECM, and the micro part which has extremely fine surface could be fabricated by use of micro-ECM with point electrode method.

  • PDF

점 전극을 이용한 마이크로 전해가공 기구에 관한 연구 (A Study on the Mechanism of Micro-ECM by Use of Point Electrode Method)

  • 김봉규;전종업;박규열
    • 한국정밀공학회지
    • /
    • 제19권8호
    • /
    • pp.77-83
    • /
    • 2002
  • This research aimed at from the establishment of theory on micro electrochemical machining mechanism to the implementation of a practical fabrication system of micro parts. In detail, the mechanism of micro-ECM was investigated with potentiodynamic method and the optimal condition for micro-ECM was selected by voltage-current-time curve with potentiostatic method. From the experimental result, the micro part which has extremely fine surface could be fabricated by use of micro-ECM with point electrode method.

미세 전해 구멍 가공에서의 가공 특성과 시뮬레이션 (Machining Characteristics in Micro Electrochemical Drilling and Simulation)

  • 김보현;이영수;최덕기;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1202-1205
    • /
    • 2005
  • Micro hole is one of basic elements for micro device or micro parts. By micro ECM, micro holes less than $50\mu{m}$ in diameter can be machined easily. Machining characteristics of micro ECM were investigated according to machining conditions such as electrolyte concentration and pulse conditions. From the investigation, optimal machining conditions were suggested for micro ECM of stainless steel. For the micro machining with high resolution, the change of machining gap should be predicted. By using electrochemical principle equations, the change of machining gap was simulated.

  • PDF

텅스텐 와이어 초단 펄스 미세 전해가공 (Tungsten Wire Micro Electrochemical Machining with Ultra Short Pulses)

  • 신홍식;김보현;주종남
    • 한국정밀공학회지
    • /
    • 제24권6호
    • /
    • pp.105-112
    • /
    • 2007
  • Tungsten wire micro electrochemical machining (W-wire micro ECM) with ultra-short pulses enables precise micro machining of metal. In wire micro ECM, platinum wire has been used because it is electrochemically stable. However, the micro metal wire with low strength is easily deformed by hydrogen bubbles which are generated during the machining. The wire deformation decreases the machining accuracy. To reduce the influence of hydrogen bubbles, in this paper, the use of tungsten wire was investigated. To improve machining accuracy, suitable pulse conditions which affect generation of bubbles were also investigated. The tungsten wire micro ECM can be applied to the fabrication of various shapes. Using this method, various micro-parts and shapes were fabricated.

미세 전해 구멍 가공에서의 가긍 조건에 따른 가공 간극 변화 특성 (Effect of Machining Conditions on machining gap in Micro Electrochemical Drilling)

  • 김보현;박병진;주종남
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.163-169
    • /
    • 2005
  • Micro hole is ode of basic elements for micro device or micro parts. Micro electrochemical machining (ECM) can be applied to the machining of micro holes less than 50 ${\mu}m$ in diameter, which it is not easy to apply other techniques to. For the machining of passivating metals such as stainless steel, machining conditions should be chosen carefully to prevent a passive layer. The machining conditions also affect the machining resolution, In this paper, machining characteristics of micro ECM were investigated according to machining conditions such as electrolyte concentration and pulse conditions. From the investigation, optimal machining conditions were suggested for micro ECM of stainless steel.

방전/전해 가공을 이용한 미세금형가공 (Micro Mold Machining Using EDM/ECM)

  • 정도관;신홍식;최세환;김보현;주종남
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.75-78
    • /
    • 2007
  • Recently, the need for micro mold or micro mechanical parts has been rapidly increased. As feature size decreases, conventional machining processes show their limitation. Micro electrical discharging machining (EDM) and electrochemical machining (ECM) have many advantages in micro machining. They can be used to make structures of micro scale, or even nano scale size. In this paper, the application of micro EDM and ECM has been investigated.

  • PDF

구연산을 이용한 스테인레스 스틸의 미세 전해가공 (Micro Electrochemical Machining of Stainless Steel Using Citric Acid)

  • 류시형
    • 한국정밀공학회지
    • /
    • 제25권3호
    • /
    • pp.134-140
    • /
    • 2008
  • Micro electrochemical machining (ECM) is conducted on stainless steel 304 using non-toxic electrolyte of citric acid. Electrochemical dissolution region is minimized by applying a few hundred second duration pulses between the tungsten SPM tip and the work material. ECM characteristics according to citric acid concentration, feeding velocity and electric conditions such as pulse amplitude, pulse frequency, and offset voltage are investigated through a series of experiments. Micro holes of $60{\mu}m$ in diameter with the depth of $50{\mu}m$ and $90{\mu}m$ in diameter with the depth of $100{\mu}m$ are perforated. Square and circular micro cavities are also manufactured by electrochemical milling. This research can contribute to the development of safe and environmentally friendly micro ECM process.

금형부품의 품질향상을 위한 표면처리에 관한 연구 (Surface treatment of mold components for quality improvement)

  • 백승엽;이하성;강동명
    • Design & Manufacturing
    • /
    • 제2권5호
    • /
    • pp.43-47
    • /
    • 2008
  • Micro Electrochemical Machining(Micro ECM) has traditionally been used in highly specialized fields such as those of the aerospace and defense industries. It is now increasingly being applied in other industries where parts with difficult-to-cut material, complex geometry and tribology such as compute. hard disk drive(HDD) are required. Pulse Electrochemical Micro-machining provides an economical and effective method for machining high strength, high tension, heat-resistant materials into complex shapes such as turbine blades of titanium and aluminum alloys. Usually aluminum alloys are used bearings to hard disk drive in computer. In order to apply aluminum alloys to bearing used in hard disk drive, this paper presents the characteristics of Micro ECM for aluminum alloy.

  • PDF

디스크 전극을 이용한 미세 전해 밀링 가공에서의 테이퍼 형상 방지 (Taper Reduction in Micro Electrochemical Milling Using Disk-type Electrode)

  • 김보현;이영수;최덕기;주종남
    • 한국정밀공학회지
    • /
    • 제22권4호
    • /
    • pp.167-172
    • /
    • 2005
  • In this paper. micro electrochemical machining (ECM) for micro structure fabrications is presented. By applying ultra short pulses. the chemical reaction can be restricted only to the region very close to the electrode. Micro ECM is applied to machining micro structures through electrochemical milling process becasuse it doesn't suffer from tool wear. Using this method. 3D micro structures were machined on stainless steel. It was found that micro machining is possible with good surface quality in the low concentration electrolyte,0.1 M H₂SO₄. In ECM, as the machining depth increases, better flushing of electrolyte is required for sufficient ion supply. Layer-by-layer milling is advantageous in flushing. However, layer-by-layer milling causes taper of structures. To reduce the taper, application of a disk-type electrode was introduced. By electrochemical milling, various 3D micro structures including a hemisphere with 60 ㎛ diameter were fabricated.