• Title/Summary/Keyword: Micro Channel

Search Result 611, Processing Time 0.031 seconds

Zeta-potential Measurement on Glass Surface by Measuring Electro-osmotic Velocity inside a Micro-channel (마이크로 채널 내부 전기삼투 유속 측정을 통한 유리표면의 Zeta-potential 측정)

  • Han, Su-Dong;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.80-84
    • /
    • 2005
  • Many important properties in colloidal systems are usually determined by surface charge ($\zeta$-potential) of the contacted solid surface. In this study, $\zeta$-potential of glass $\mu$-channel was evaluated from the electro-osmotic velocity distribution. The electro-osmotic velocity inside a glass $\mu$-channel was measured using a micro-PIV velocity field measurement technique. This evaluation method is more simple and easy to approach, compared with the traditional streaming potential technique. The $\zeta$-potential in the glass $\mu$-channel was measured for two different mole NaCl solutions. The effect of an anion surfactant, sodium dodecyl sulphate (SDS), on the electro-osmotic velocity and $\zeta$-potential in the glass surface was also studied. In the range of $0\∼6$mM, the surfactant SDS was added to NaCl solution in four different mole concentrations. As a result, the addition of SDS increases $\zeta$-potential in the surface of the glass $\mu$-channel. The measured $\zeta$-potential was found to vary from-260 to-70mV. When negatively charged particles were used, the flow direction was opposite compared with that of neutral particles. The $\zeta$-potential has a positive sign for the negative particles.

  • PDF

Measurement of Zeta-potential of Electro-osmotic Flow Inside a Micro-channel (마이크로 채널 내부 전기삼투 유동의 Zeta-potential 계측)

  • Han Su-Dong;Lee Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.935-941
    • /
    • 2006
  • Many important properties in colloidal systems are usually determined by surface charge $({\zeta}-potential)$ of the contacted solid surface. In this study, ${\zeta}-potential$ of glass ${\mu}-channel$ was evaluated from the electro-osmotic velocity distribution. The electro-osmotic velocity inside a glass f-channel was measured using a micro-PIV velocity field measurement technique. This evaluation method is more simple and easy to approach, compared with the traditional streaming potential technique. The ${\zeta}-potential$ in the glass ${\mu}-channel$ was measured fur two different mole NaCl solutions. The effect of an anion surfactant, sodium dodecyl sulphate (SDS), on the electro-osmotic velocity and f-potential in the glass surface was also studied. In the range of $0{\sim}6mM$, the surfactant SDS was added to NaCl solution in few different mole concentrations. As a result, the addition of SDS increases ${\zeta}-potential$ in the surface of the glass ${\mu}-channel$. The measured $\zeta-potential$ was found to vary from -260 to -70mV. When negatively charged particles were used, the flow direction was opposite compared with that of neutral particles. The ${\zeta}-potential$ has a positive sign for the negative particles.

Fabrication of Micro-fluidic Channels using a Flexible and Rapid Surface Micro-machining Technique (유연하고 신속한 표면미세가공기술을 이용한 Micro-fluidic Channel 제작)

  • 김진산;성인하;김대은
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.97-101
    • /
    • 2002
  • Recently, the need for transporting and manipulating minute amount of fluids in microscale channels (so-called micro-fluidics) has been increasing, especially in biotechnology and biochemical processing. This work demonstrates that the so-called mechano-chemical process which consists of mechanical abrasive action combined with chemical process can be used to f뮤ricate micro-fluidic channels more rapidly and cost effectively than other methods. In this work, capillary filling of fluids in micro-channels was investigated by theoretical approaches and experiments. From the experimental results, it is expected that a complex micro-fluidic system can be fabricated using the micro-fabrication technique and microsystem packaging method described in this work.

Analysis of subthreshold region transport characteristics according to channel doping for DGMOSFET using MicroTec (MicroTec을 이용한 DGMOSFET의 채널도핑에 따른 문턱전압이하영역 특성분석)

  • Han, Ji-Hyung;Jung, Hak-Kee;Lee, Jong-In;Jeong, Dong-Soo;Kwon, Oh-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.715-717
    • /
    • 2010
  • In this paper, the subthreshold characteristics have been alanyzed using MicroTec4.0 for double gate MOSFET(DGMOSFET). The DGMOSFET is extensively been studing since it can reduce the short channel effects due to structural characteristics. We have presented the short channel effects such as subthreshold swing and threshold voltage for DGMOSFET, using MicroTec, semiconductor simulator. We have analyzed for channel length, thickness and width to consider the structural characteristics for DGMOSFET. The subthreshold swing and threshold voltage have been analyzed for DGMOSFET using MicroTec since MicroTec is well verified as comparing with results of the numerical three dimensional models.

  • PDF

Technology Development of Micro Channel Fabrication using UV Laser Micromachining (UV 레이저 마이크로머시닝을 이용한 마이크로 채널 제작기술개발)

  • Yang S. B.;Chang W. S.;Kim J. G.;Shin B. S.;Jeon B. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.237-240
    • /
    • 2004
  • In this study, we have developed a new $UV(\lambda=355nm)$ laser micromachining technology by direct ablation method without masks. This technology allows that 3D micro parts can be fabricated rapidly and efficiently with a low price. And it has a benefit of reducing fabricating process simply. Due to micro parts' fabrication, such technologies need the control of XYZ stages with high precision, the design of optical devices to maintain micron spot sizes of laser beam and the control technology of laser focus. Also, we have fabricated a micro-channel through the developed laser micromachining technology and verified it through the results.

  • PDF

A Study of Micro-Channel Fabrication by Micro-Milling and Magnetic Abrasive Deburring (마이크로 밀링과 자기디버링을 적용한 마이크로 유동채널 가공)

  • Kwak, Tae-Kyung;Kwak, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.899-904
    • /
    • 2011
  • This This study aims to verify burr formation and to remove the burrs in micro-channel fabrication using micro-machining tools. The machining processes are combined with micro-milling and magnetic abrasive deburring for AISI316 stainless steel. Depending on the micro-milling conditions that are applied, burrs are formed around the side walls. Magnetic abrasive deburring is used to remove these burrs. AISI316 stainless steel is a nonferrous material and its magnetic flux density, which is an important parameter for efficient magnetic abrasive deburring, is low. To enhance this magnetic flux density, we design and build a magnetic array table. The effect of removing burrs is evaluated via SEM and a surface tester.

Micro-LIF measurement of microchannel flow

  • Kim Kyung Chun;Yoon Sang Youl
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.65-74
    • /
    • 2004
  • Measurement of concentration distributions of suspended particles in a micro-channel is out of the most crucial necessities in the area of Lab-on-a-chip to be used for various bio-chemical applications. One most feasible way to measure the concentration field in the micro-channel is using micro-LIF(Laser Induced Fluorescence) method. However, an accurate concentration field at a given cross plane in a micro-channel has not been successfully achieved so far due to various limitations in the light illumination and fluorescence signal detection. The present study demonstrates a novel method to provide an ultra thin laser sheet beam having five(5) microns thickness by use of a micro focus laser line generator. The laser sheet beam illuminates an exact plane of concentration measurement field to increase the signal to noise ratio and considerably reduce the depth uncertainty. Nile Blue A was used as fluorescent dye for the present LIF measurement. The enhancement of the fluorescent intensity signals was performed by a solvent mixture of water $(95\%)$ and ethanol (EtOH)/methanol (MeOH) $(5\%)$ mixture. To reduce the rms errors resulted from the CCD electronic noise and other sources, an expansion of grid size was attempted from $1\times1\;to\;3\times3\;or\;5\times5$ pixel data windows and the pertinent signal-to-noise level has been noticeably increased accordingly.

  • PDF

Numerical Analysis of Electroosmotically Enhanced Microchannel Heat Sinks (전기삼투를 이용한 미세열방출기의 수치해석)

  • Husain, Afzal;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2544-2547
    • /
    • 2008
  • A micro channel heat sink has been studied and optimized for mixed pressure driven and electroosmotic flows through three-dimensional numerical analysis. The effects of ionic concentration represented by zeta potential and Debye thickness are studied with the various steps of externally applied electric potential. Optimization of the micro channel heat sink has been performed considering two design variables related to the micro channel width, depth and fin width. The surrogate-based optimization is performed using a search algorithm taking overall thermal resistance as objective function. The thermal resistance is found to be more sensitive to channel width-to-depth ratio than fin width-to-depth of channel ratio.

  • PDF