• Title/Summary/Keyword: Micro Bubble

Search Result 196, Processing Time 0.035 seconds

A Study on the Cleanup of Diesel-Contaminated Soil by Micro-Bubble Soil Washing Process (미세기포를 이용한 토양세척기법의 디젤 오염토양 정화에 관한 연구)

  • 조장환;정민정;민경석;최상일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.04a
    • /
    • pp.97-99
    • /
    • 1999
  • 본 연구에서는 디젤로 오염된 토양을 효율적으로 정화하기 위해, 알칼리제와 과산화수소를 이용하는 새로운 방식의 토양세척기법에 대하여 일련의 회분식 실험을 통하여 최적의 운전조건을 검토하고자 하였다. 알칼리제인 NaOH를 이용하여 세척수의 pH를 상승시켜, 강알칼리 상태에서 과산화수소를 주입하면 미세기포가 발생되며, 이 미세기포에 의해 토양에 흡착되어 있는 유류 오염물질이 효과적으로 탈착.부상된다. #60(0.25mm) 이하의 자연토양을 6,500 mg TPH/kg dry soil로 오염시켜 사용하였으며, 세척수의 pH, 진탕비(토양 중량 : 세척용액 부피), 과산화수소 주입량, 세척시간에 의한 영향을 살펴보았다. 세척수의 pH는 12, 진탕비는 1:5, 과산화수소 주입량은 1%, 세척시간은 1시간으로 적용한 결과 최대효율(60%)을 얻을 수 있었다.

  • PDF

Improvement of the Thickening Characteristics of Activated Sludge by Electroflotation (EF) (전해부상을 이용한 활성슬러지의 농축효율 향상)

  • Choi, Young Gyun;Chung, Tai Hak;Yeom, Ick Tae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.295-300
    • /
    • 2005
  • The performances of electroflotation (EF) on the thickening of activated sludge were investigated using laboratory scale batch flotation reactors. Four activated sludges including bulking sludges were tested. After 30minutes of EF operation, 57-84 % of sludge volume reduction could be achieved by EF, while only about 1.5-14% could be obtained by gravity thickening for the same period. After thickening the effluent water quality in terms of TCOD, SS, and turbidity was improved by EF operation for all sludge samples. It is induced that the air bubbles entrapped in the thickened sludge play a key role in the observed improvement of sludge thickening and effluent quality.

Thermoelectric Composites Based on Carbon Nanotubes and Micro Glass Bubbles (탄소나노튜브 및 마이크로 글래스 버블 기반 열전 복합재)

  • Kang, Gu-Hyeok;Seong, Kwangwon;Kim, Myungsoo;Kim, In Guk;Bang, In Cheol;Park, Hyung Wook;Park, Young-Bin
    • Composites Research
    • /
    • v.28 no.2
    • /
    • pp.70-74
    • /
    • 2015
  • In this paper, carbon nanotubes (CNTs) and micro glass bubbles (GBs) have been incorporated into a polyamide6 (PA6) matrix to impart thermoelectric properties. The spaces created in the matrix by GBs allows the formation of "segregated" CNT network. The tightly bound CNT network, if controlled properly, can serve as a conductive path for electron transport, while prohibiting phonon transport, which would provide an ideal configuration for thermoelectric applications. The CNTs and GBs were dispersed in a nylon-formic acid solution using horn sonication followed by coagulation in deionized water, and nanocomposite panels were fabricated using a hot press. The performance of nanocomposite panels was evaluated from thermal and electrical conductivities and Seebeck coefficient, and a thermoelectric figure of merit as high as 0.016 was achieved.

MULTI-SCALE MODELING AND ANALYSIS OF CONVECTIVE BOILING: TOWARDS THE PREDICTION OF CHF IN ROD BUNDLES

  • Niceno, B.;Sato, Y.;Badillo, A.;Andreani, M.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.620-635
    • /
    • 2010
  • In this paper we describe current activities on the project Multi-Scale Modeling and Analysis of convective boiling (MSMA), conducted jointly by the Paul Scherrer Institute (PSI) and the Swiss Nuclear Utilities (Swissnuclear). The long-term aim of the MSMA project is to formulate improved closure laws for Computational Fluid Dynamics (CFD) simulations for prediction of convective boiling and eventually of the Critical Heat Flux (CHF). As boiling is controlled by the competition of numerous phenomena at various length and time scales, a multi-scale approach is employed to tackle the problem at different scales. In the MSMA project, the scales on which we focus range from the CFD scale (macro-scale), bubble size scale (meso-scale), liquid micro-layer and triple interline scale (micro-scale), and molecular scale (nano-scale). The current focus of the project is on micro- and meso-scales modeling. The numerical framework comprises a highly efficient, parallel DNS solver, the PSI-BOIL code. The code has incorporated an Immersed Boundary Method (IBM) to tackle complex geometries. For simulation of meso-scales (bubbles), we use the Constrained Interpolation Profile method: Conservative Semi-Lagrangian $2^{nd}$ order (CIP-CSL2). The phase change is described either by applying conventional jump conditions at the interface, or by using the Phase Field (PF) approach. In this work, we present selected results for flows in complex geometry using the IBM, selected bubbly flow simulations using the CIP-CSL2 method and results for phase change using the PF approach. In the subsequent stage of the project, the importance of effects of nano-scale processes on the global boiling heat transfer will be evaluated. To validate the models, more experimental information will be needed in the future, so it is expected that the MSMA project will become the seed for a long-term, combined theoretical and experimental program.

Visualization of Microbubbles Affecting Drag Reduction in Turbulent Boundary Layer (마찰저항 감소에 영향을 주는 난류 경계층 내 미세기포(microbubble)의 가시화 연구)

  • Paik, Bu-Geun;Yim, Geun-Tae;Kim, Kwang-Soo;Kim, Kyoung-Youl;Kim, Yoo-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.356-363
    • /
    • 2015
  • Microbubbles moving in the turbulent boundary layer are visualized and investigated in the point of frictional drag reduction. The turbulent boundary layer is formed beneath the surface of the 2-D flat plate located in the tunnel test section. The microbubble generator produces mean bubble diameter of 30 – 50 μm. To capture the micro-bubbles passing through the tiny measurement area of 5.6 mm2 to 200 mm2, the shadowgraphy system is employed appropriately to illuminate bubbles. The velocity field of bubbles reveals that Reynolds stress is reduced in the boundary layer by microbubbles’ activity. To understand the contribution of microbubbles to the drag reduction rate more, much smaller field-of-view is required to visualize the bubble behaviors and to find the 2-D void fraction in the inner boundary layer.

Modeling of Scattered Signal from Ship Wake and Experimental Verification (항적 산란신호의 모델링과 실험적 검증)

  • Ji, Yoon-Hee;Lee, Jae-Hoon;Kim, Jea-Soo;Kim, Jung-Hae;Kim, Woo-Shik;Choi, Sang-Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.10-18
    • /
    • 2009
  • A moving surface vessel generates a ship wake which contains a cloud of micro-bubbles with radii ranging between $8{\sim}200{\mu}m$. Such micro-bubbles can be detected by active sonar system for more than ten minutes depending on the size and speed of the surface vessel. In this paper, a reverberation model for the ship wake is presented. The developed model consists of the acoustic scattering model due to the distribution of the micro-bubbles and the kinematic model for the moving active sonar. The acoustic scattering model is based on the volume integration, where the volume scattering strengths are obtained from the spatial distribution of micro-bubbles. Since the directivity and look-direction of active sonar are important factors for moving active sonar, the kinematic model utilizes the Euler transformation to obtain the relative motion between the global and local coordinates. In order to verify the developed model, a series of sea experiment was executed in September 2007 to obtain the spatial-temporal distribution of a bubble cloud, and analyzed to be compared with the simulation results.

A Study on the Cleanup fur Diesel-Contaminated Soil by Micro-Bubble Enhanced Soil Washing Process (미세기포를 이용한 토양세척기법의 디젤 오염토양 정화에 관한 연구)

  • 조장환;장윤영;최상일
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.1
    • /
    • pp.49-55
    • /
    • 1999
  • The treatment of petroleum contaminated soil requires various physico-chemical remediation technologies which are efficient in time and can reduce the possibility of secondary contamination by themselves In this study, an innovated soil washing process was proposed to treat the diesel-contaminated soil. Micro-bubbles, which were generated by hydrogen peroxide, deserted and floated the contaminants. Soils less than #60(0.25mm) were artificially contaminated by 6,500mg TPH/kg dry soil initially. The process was examined for pH, the soil to water mixing ratio, concentration of $H_2O$$_2$, and contacting times. In the case of less than #60 soil, maximum removal efficiency(60%) was obtained at pH 12. 1.0% hydrogen peroxide, and 1 : 5 soil to water mixing ratio for 1 hour.

  • PDF

A Comparative Study of Turbulence Models for Dissolved Air Flotation Flow Analysis (용존공기부상법 유동해석을 위한 난류모델 비교연구)

  • Park, Min A;Lee, Kyun Ho;Chung, Jae Dong;Seo, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.617-624
    • /
    • 2015
  • The dissolved air flotation (DAF) system is a water treatment process that removes contaminants by attaching micro bubbles to them, causing them to float to the water surface. In the present study, two-phase flow of air-water mixture is simulated to investigate changes in the internal flow analysis of DAF systems caused by using different turbulence models. Internal micro bubble distribution, velocity, and computation time are compared between several turbulence models for a given DAF geometry and condition. As a result, it is observed that the standard ${\kappa}-{\varepsilon}$ model, which has been frequently used in previous research, predicts somewhat different behavior than other turbulence models.

A New Asynchronous Pipeline Architecture for CISC type Embedded Micro-Controller, A8051 (CISC 임베디드 컨트롤러를 위한 새로운 비동기 파이프라인 아키텍쳐, A8051)

  • 이제훈;조경록
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.4
    • /
    • pp.85-94
    • /
    • 2003
  • The asynchronous design methods proved to have the higher performance in power consumption and execution speed than synchronous ones because it just needs to activate the required module without feeding clock in the system. Despite the advantage of CISC machine providing the variable addressing modes and instructions, its execution scheme is hardly suited for a synchronous Pipeline architecture and incurs a lot of overhead. This paper proposes a novel asynchronous pipeline architecture, A80sl, whose instruction set is fully compatible with that of Intel 80C51, an embedded micro controller. We classify the instructions into the group keeping the same execution scheme for the asynchronous pipeline and optimize it eliminating the bubble stage that comes from the overhead of the multi-cycle execution. The new methodologies for branch and various instruction lengths are suggested to minimize the number of states required for instructions execution and to increase its parallelism. The proposed A80C51 architecture is synthesized with 0.35${\mu}{\textrm}{m}$ CMOS standard cell library. The simulation results show higher speed than that of Intel 80C51 with 36 MHz and other asynchronous counterparts by 24 times.

Sensitivity Analysis of Initial Pressure and Upper Control Limit on the Pressure Decay Test for Membrane Integrity Evaluation (압력손실시험을 이용한 막 완결성 평가에서 초기압력 및 UCL 도출인자 민감도 분석)

  • Lee, Joohee;Hong, Seungkwan;Hur, Hyunchul;Lee, Kwangjae;Choi, Youngjune
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.793-800
    • /
    • 2008
  • Recently domestic drinking water industry has recognized membrane-based technology as a promising alternative for water treatment. To ensure successful application of membrane processes, the integrity of membrane systems should be maintained. According to US EPA guidance, the pressure decay test based on the bubble point theory is recommended to detect any membrane defection of which size is close to the smallest diameter of Cryptosporidium oocysts, $3{\mu}m$. Proper implementation of the pressure decay test is greatly affected by initial test pressure, and the interpretation of the test results is associated with upper control limit. This study is conducted to investigate various factors affecting determination of initial test prtessure and upper control limit, including membrane-based parameters such as pore shape correction factor, surface tension and contact angle, and system-based parameters, such as volumetric concentration factor and total volume of system. In this paper, three different hollow fibers were used to perform the pressure decay test. With identical initial test pressure applied, their pressure decay tendency were different from each other. This finding can be explained by the micro-structure disparity of those membranes which is verified by FESEM images of those membranes. More specifically, FESEM images revealed that three hollow fibers have asymmetry, deep finger, shallow finger pore shape, respectively. In addition, sensitivity analysis was conducted on five parameters mentioned above to elucidate their relation to determination of initial test pressure and upper control limit. In case of initial pressure calculation, the pore shape correction factor has the highest value of sensitivity. For upper control limit determination, system factors have greater impact compared to membrane-based parameters.