• Title/Summary/Keyword: Micro Air Bubble

Search Result 54, Processing Time 0.019 seconds

Field Application of Concrete Using Drying Shrinkage-Reducing Superplasticizer (건조수축 저감형 유동화제를 사용한 콘크리트의 현장적용)

  • Shin, Jae-Kyung;Oh, Chi-Hyun;Choi, Jin-Man;Lee, Seong-Yeun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.13-16
    • /
    • 2006
  • This study investigates filed application in Daebul Free Trade Zone of a flowing method using drying shrinkage-reducing superplasticizer(SRS) and an insulating curing method using double bubble sheets. Test showed that fresh concrete satisfied target slump and air content. A structure adding SRS significantly decreased the total bleeding capacity and accelerated the setting time. As for the crack occurrence, the structure applying the flowing method and double bubble sheets simultaneously exhibited the most favorable crack endurance, while conventional concrete showed more than 1mm size of crack in overall, and a structure applying only the flowing method partially presented micro crack. For the area proportion of crack occurrence, the structure using the double bubble sheets indicated 9.8%, while others applying flowing method was 28%, compared with 100% of conventional one. Standard curing specimens had about $3{\sim}6%$ higher compressive strength than that of specimens cured at adjacent field construction. In addition, using SRS improved about $5{\sim}7MPa$, than that of conventional concrete at 91 days elapse.

  • PDF

Heavy Metal Removal Efficiency in Accordance with Changes in Acid Concentrations in a Micro-nano Bubble Soil Washing System and Pickling Process (마이크로나노버블 토양세척시스템 및 산세척 복합공정의 산 농도변화에 따른 중금속 제거효율에 관한 연구)

  • Jung, Jin-Hee;Choi, Ho-Eun;Jung, Byung-Gil;Sung, Nak-Chang;Yi, Gi-Chul;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.26 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • This study was aimed at determining the changes in heavy metal removal efficiency at different acid concentrations in a micro-nanobubble soil washing system and pickling process that is used to dispose of heavy metals. For this purpose, the initial and final heavy metal concentrations were measured to calculate the heavy metal removal efficiency 5, 10, 20, 30, 60, and 120 min into the experiment. Soil contaminated by heavy metals and extracted from 0~15 cm below the surface of a vehicle junkyard in the city of U was used in the experiment. The extracted soil was air-dried for 24 h, after which a No. 10 (2 mm) was used as a filter to remove large particles and other substances from the soil as well as to even out the samples. As for the operating conditions, the air inflow rate in the micro-nano bubble soil washing system was fixed at 2 L/min,; with the concentration of hydrogen peroxide being adjusted to 5%, 10%, or 15%. The treatment lasted 120 min. The results showed that when the concentration of hydrogen peroxide was 5%, the efficiency of Zn removal was 27.4%, whereas those of Ni and Pb were 28.7% and 22.8%, respectively. When the concentration of hydrogen peroxide was 10%, the efficiency of Zn removal was 38.7%, whereas those of Ni and Pb were 42.6% and 28.6%, respectively. When the concentration of hydrogen peroxide was 15%, the efficiency of Zn removal was 49.7%, whereas those of Ni and Pb were 57.1% and 42.6%, respectively. Therefore, the efficiency of removal of all three heavy metals was the highest when the hydrogen peroxide concentration was 15%.

Analysis of the operating factors of dissolved air flotation (DAF) process for effluent quality improvement from aquaculture rearing tank (양식장 배출수 수질관리를 위한 용존공기부상 공법의 운전 인자 영향 분석)

  • Ki, Jae-Hong;Kim, Hyoung-Jun;Lee, Ju-Young;Han, Moo-Young;Gang, Hee-Woong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.107-113
    • /
    • 2012
  • Pollutants in aquaculture system effluent mostly originated from solid wastes including uneaten feed and excreta of cultured species. In this research, DAF(Dissolved Air Flotation) unit is suggested as an integrated solid control unit especially as a form of IIBG(Inline Injection Bubble Generation) process in aquaculture system. Solid removal performance of DAF unit was examined under various operation and salinity conditions with turbidity and suspended solid. Solid waste removal efficiencies were found to be affected by operation conditions including saturator pressure, recycle ratio, coagulant concentration. Solid removal efficiency was higher under higher saturator pressure and recycle ratio under which condition larger number of bubbles is generated. Coagulant is thought to have important role in creating bubble-particle aggregate by showing better removal efficiency with higher concentration. However higher saline water showed less effectiveness in removing solids by DAF(IIBG). Application of DAF(IIBG) process also showed additional effect in phosphate removal and DO(Dissolved Oxygen) supply. Phosphate existed in polluted water was removed up to 46% after treatment, which is thought to attribute to aluminium phosphate precipitation. And DO concentration was found to increase over 50% of initial saturation concentration after the injection of micro-bubbles. Through experiments on solid removal from aquaculture effluent, DAF(IIBG) process is estimated to be effective solid control method. This property can help aquaculture system being installed and operated simply and effectively.

Comparative Study on Removal Characteristics of Disinfection By-products by Air Stripping and Flotation Processes (탈기와 부상 공정에 의한 소독부산물의 제거특성에 관한 비교 연구)

  • Cha, Hwa-Jeong;Won, Chan-Hee;Lee, Kang-Hag;Oh, Won-Kyu;Kwak, Dong-Heui
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.513-520
    • /
    • 2016
  • It is well known that volatile compounds including disinfection by-products as well as emissive dissolved gas in water can be removed effectively by air stripping. The micro-bubbles of flotation unit are so tiny as microns while the diameter of fine bubbles applied to air stripping is ranged from hundreds to thousands of micrometer. Therefore, the micro-bubbles in flotation can supply very wide specific surface area to transfer volatile matters through gas-liquid boundary. In addition, long emission time also can be gained to emit the volatile compound owing to the slow rise velocity of micro-bubbles in the flotation tank. There was a significant difference of the THMs species removal efficiency between air stripping and flotation experiments in this study. Moreover, the results of comparative experiments on the removal characteristics of THMs between air stripping and flotation revealed that the mass transfer coefficient, $K_La$ showed obvious differences. To overcome the limit of low removal efficiency of dissolved volatile compounds such as THMs in flotation process, the operation range of bubble volume concentration is required to higher than the operation condition of conventional particle separation.

Effect of Various Shapes of Mixer Geometry on Two-Phase Flow Patterns in a Micro-Channel (마이크로 채널 내 혼합부 형상이 2상 유동 양식에 미치는 영향에 대한 연구)

  • Lee, Kwan Geun;Lee, Jun Kyoung;Park, Taehyun;Kim, Gyo Nam;Park, Eun Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.2
    • /
    • pp.75-80
    • /
    • 2015
  • The effect of inlet mixer geometries on the two-phase flow patterns in square micro-channel with $600{\times}600{\mu}m$ was investigated experimentally in this paper. The 4 different mixer configurations based on the Y, Impacting, and two T types (gas and liquid inlets were switched) were used. The test fluids were nitrogen and water. The liquid and gas superficial velocities were 0.01~10 m/s and 0.1~100 m/s, respectively. Several distinctive flow patterns, namely, annular, slug-annular, slug, slug-bubbly, bubbly, and churn flow could be seen. The flow pattern maps for each mixer were suggested, and it can be concluded that two-phase flow patterns are not very sensitive to the mixer geometries. But the mixing behaviors of gas and liquid for each mixer were different for slug and bubbly flow. Thus, the characteristics of slug and bubble for each case were not same.

Colour Removal from Dyestuff Wastewater by Micro Bubbles Flotation Process (마이크로 버블 부상 공정에 의한 염료폐수의 색도 제거)

  • Kim, Myeng-Joo;Han, Sien-Ho
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.606-612
    • /
    • 2022
  • The purpose of this study is to convert hydrophobic dyestuff to hydrophilic dyestuff by reacting cationic collector with anionic dyestuff and reaction anionic collector with cationic dyestuff. The removal of colors from aqueous solutions and/or dispersions has been studied by dispersed-air flotation in a batch column. In this studies used generated micro bubble by ceramic gas diffuser having micro pore size for air flotation process. In this study, a ceramic gas diffuser with micro pore size was used to generate micro bubbles for the air flotation process. Two colours were used for the experiments: Basic Yellow 1 (cationic dyestuff) and Direct Orange 10 (anionic dyestuff). All two were effectively removed by flotation within 8 mins. Sodium dodecyl sulfate, sodium oleate (an anionic collector), and amines (a cationic collector) were found to be effective as collectors in the removal of color, which was found to be related to the pH of the solution and the amount of collector added to it, with high collector dosages causing the process to become pH-independent.

A Study on Cost-effective Treatment of Wastewater and Odor Reduction for Southeast Asian Market Entry

  • Jung, Min-Jae;Kim, Yong-Do;Kwon, Lee-Seung;Lee, Woo-Sic;Kwon, Woo-Taeg
    • The Journal of Industrial Distribution & Business
    • /
    • v.9 no.12
    • /
    • pp.23-29
    • /
    • 2018
  • Purpose - The purpose of this study is to apply a cost effective ultrasonic odor reduction method that generated micro-bubbles using ejector to the Southeast Asian wastewater market. Research design, data, and methodology - A leather maker located in Ansan-city, Gyunggi-do, South Korea was sampled from the collection tank to select experimental materials. Experimental setup consisted of circulating water tank-air ejector-ultrasonic device, and circulating wastewater. Sample analysis was performed by CODcr, T-N, T-P, and turbidity by the National Environmental Science Institute. Results - Experimental results show that it is most effective in removing odors when the frequency range of ultrasonic wave is 60~80 Khz and the output is 200 W. It showed that the concentration of complex odor dropped from a maximum of 14,422 times to a minimum of 120 times. Also, analysis of ammonia and hydrogen sulfide in specific odor substances has shown that they were reduced from 1.5 ppm to 0.4 ppm and from 0.6 ppm to 0.1 ppm, respectively. Conclusions - It is possible to shorten more than 12 hours in the treatment of micro-organisms. It can be seen that the processing time of odor after ultrasonic treatment in the pre-treatment facility is reduced by 25% when compared to the resultant micro-organisms after the chemical treatment, that is, the time of the bio-treatment of micro-organisms. Based on the results, it was confirmed that the pre-treatment method using the ultrasonic and the air ejector device of the experiment shows the effect of reducing the water pollutants and odor more effectively in a relatively short time than the conventional advanced oxidation method.

Crystal Growth of $Ca_3(Li,Nb,Ga)_5O_{12}$ Garnet Crystals

  • Yu, Young-Moon;Chani, Valery-I.;Shimamura, Kiyoshi;Fukuda, Tsuguo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.351-374
    • /
    • 1996
  • Various types of garnet compounds were synthsized by iso-and aliovalent substitutions and sintering method. Among them, fiber shapes of garnet crystals were grown from the $Ca_3Li_xNb_{(1.5+x)}Ga_{(3.5-2x)}O_{12}$ melt where x = 0 ~ 0.5 by modified micro-pulling down method in air using Pt crucibles. The measured lattice constants as a function of solidification fraction of grown fiber crystals are about $12.54\;{\AA}$ irrespective of x. It was found that the $Ca_3Li_{0.275}Nb_{1.775}Ga_{2.95}O_{12}$ garnet melts congruently at about $1450\;^{\circ}C$ based on the purities of garnet phase and variations of lattice parameter. Transparent and bubble-free crystals of x = 0.25 and 0.275 were grown by Czochralski techniques in air using Pt crucibles. An absorption spectrum is also reported.

  • PDF

A Comparative Study of Turbulence Models for Dissolved Air Flotation Flow Analysis (용존공기부상법 유동해석을 위한 난류모델 비교연구)

  • Park, Min A;Lee, Kyun Ho;Chung, Jae Dong;Seo, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.617-624
    • /
    • 2015
  • The dissolved air flotation (DAF) system is a water treatment process that removes contaminants by attaching micro bubbles to them, causing them to float to the water surface. In the present study, two-phase flow of air-water mixture is simulated to investigate changes in the internal flow analysis of DAF systems caused by using different turbulence models. Internal micro bubble distribution, velocity, and computation time are compared between several turbulence models for a given DAF geometry and condition. As a result, it is observed that the standard ${\kappa}-{\varepsilon}$ model, which has been frequently used in previous research, predicts somewhat different behavior than other turbulence models.

Remediation of Sediments using Micro-bubble (미세기포를 이용한 퇴적물 정화)

  • Kang, Sang Yul;Kim, Hyoung Jun;Kim, Tschung Il;Park, Hyun Ju;Na, Choon Ki;Han, Moo Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.420-427
    • /
    • 2016
  • This study was conducted on the sediment remediation using micro-bubble to remove fine particles. For this study, characteristics of contamination and release in sediment were analyzed. And then, the characteristics of bubbles on removal efficiency was investigated at various operation conditions. In particle size distribution of the sediment used for the study, the proportion of clay and silt (<0.075 mm) was about 7.7%, sand (0.075~4.75 mm) was about 67.8%, and gravel (${\geq}4.75$) was 24.5%. Total nitrogen (TN) and total phosphorus (TP) of the sediment were 2,790~3,260, 261~311 mg/kg respectively. Ignition loss and water content were 4.1~9.6, 32.9~53.2% respectively. In analysis of removal efficiency according to operation conditions of micro-bubble, it was the highest when operation condition is pressure 6 atm, pressurized water ratio 30%, and coagulant dosage 15 ppm. At the time, the sediment's removal efficiency was 19.9%. Accordingly removal efficiency of TN and TP were 21.4, 22.6% respectively. Finally a research was found that fine particles in sediment were almost removed by micro-bubble, which led to decrease nutrients' release at about 20.1~64.3% in comparison to sediment including lots of fine particles.