• Title/Summary/Keyword: Micro Accelerometer

Search Result 57, Processing Time 0.022 seconds

Hand arm vibration measurement using micro-accelerometer in different brick structures

  • Gomathi, K.;Senthilkumar, A.;Shankar, S.;Thangavel, S.;Priya, R. Mohana
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.959-974
    • /
    • 2014
  • Hand-Arm Vibration Syndrome (HAVS) is a group of diseases caused by exposure of the hands to vibration while operating the hand held power tools such as road breaker, drilling machine, demolition hammer in construction works. In this paper, area-changed capacitive micro-accelerometer is designed to measure the vibration exposure on worker's hand when operating a drilling machine on various blocks such as clay block, paver block and solid cement block. The design process includes mathematical modelling of micro-accelerometer and simulations are done using INTELLISUITE 8.6. Experimental results are taken for various blocks surfaces using conventional and micro-accelerometer. Comparisons show that usage of area-changed micro-accelerometer for Hand-arm vibration monitoring provides better sensitivity, which in turn reduces the risk of HAVS in workers.

In-Process Monitoring of Micro Resistance Spot Weld Quality using Accelerometer (가속도계를 이용한 마이크로스폿용접의 인프로세스 모니터링)

  • Chang, Hee-Seok;Kwon, Hyo-Chul
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.115-122
    • /
    • 2011
  • This study is to propose an in-process monitoring system for micro resistance spot welding processes using minute accelerometer. A minute accelerometer is mounted on the upper moving electrode tip holder. With its high sensitivity and frequency response characteristics, accelerometer output signal has been successfully recorded and integrated twice to reflect electrode expansion during micro spot welding processes. The analysis of electrode expansion pattern was attempted to find its correlation with spot weld quality. Major previous findings1-6) regarding spot weld quality assessment with the electrode expansion signal in large scale resistance spot welding processes were proved to be true in this in-process monitoring system.

Character Tracking for Using an Accelerometer Sensor (Accelerometer Sensor를 이용한 문자 추적에 관한 고찰)

  • 여영호;배명수;손수국;유진용
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.43-46
    • /
    • 2002
  • This paper is about the Micro Accelerometer Sensor that collect the human's writing patterns so as to process its signals. Finally, we pursue the accuracy of digital data about the writing pattern and hope to discuss the possibility of the Micro Accelerometer Sensor Besides, we researched the compensation of signal distortion due to tiIt and analyzed the noise error in order to improve its accuracy.

  • PDF

Development of Micro-opto-mechanical Accelerometer using Optical fiber (광섬유를 이용한 미세 광 기계식 가속도 센서의 개발)

  • Lee, Seung-Jae
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.93-99
    • /
    • 2011
  • This paper presents a new type of optical silicon accelerometer using deep reactive ion etching (DRIE) and micro-stereolithography technology. Optical silicon accelerometer is based on a mass suspended by four vertical beams. A vertical shutter at the end of the mass can only moves along the sensing axis in the optical path between two single-mode optical fibers. The shutter modulates intensity of light from a laser diode reaching a photo detector. With the DRIE technique for (100) silicon, it is possible to etch a vertical shutter and beam. This ensures low sensitivity to accelerations that are not along the sensing axis. The microstructure for sensor packaging and optical fiber fixing was fabricated using micro stereolithography technology. Designed sensors are two types and each resonant frequency is about 15 kHz and 5 kHz.

Thermal Response Analysis of a Low Thermal Drift Three-axis Accelerometer for High Temperature Environments

  • Ishida Makoto;Lee Kyung Il;Takao Hidekuni;Sawada Kazuaki;Seo Hee Don
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.872-875
    • /
    • 2004
  • In this paper, thermal response analysis of a temperature controlled three-axis accelerometer for high temperature environments with integrated micro-heaters and temperature sensors is investigated with finite element method (FEM) program, ANSYS and infrared thermal measurement systems. And availability to application fields from a viewpoint about short thermal response time is discussed. In this paper, the time of three-axis accelerometer for high temperatures becoming $300^{\circ}C$ by integrated micro-heaters and temperature sensors to reduce thermal drift characteristics was analyzed as a thermal response time of this device. The simulated thermal response time (time until SOI piezoresistors actually becomes $300^{\circ}C$) of three-axis accelerometer for high temperatures with ANSYS is about 0.6s, and measured result with infrared temperature measurement systems is about 0.64s. Experimental results using infrared thermal measurement systems agreed well with these theoretical results.

  • PDF

Micromachining of Pyrex Class for Accelerometer (가속도 센서용 파이렉스 유리의 미세가공)

  • 김광현;최영현;최종순;박동삼;유우식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.268-273
    • /
    • 2002
  • The mechanical etching technique has recently been developed to a powder blasting technique for various materials, capable of producing micro structures larger than 100$\mu\textrm{m}$. This paper describes the performance of powder blasting technique in micromachining of pyrex for the accelerometer sensor and the effect of the number of nozzle scanning and the stand-off distance on the erosion depth.

  • PDF

Electrode Force Characteristics of Micro Servogun (마이크로 서보건의 가압 특성)

  • 임창식;박승규;장희석
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.159-161
    • /
    • 2003
  • Electrode movement signal has been widely used in resistance spot welding system This study is to compare accelerometer signal with gap sensor signal in servo gun system. This study propose that accelerometer output signal is a useful technique of quality monitoring in resistance welding processes.

  • PDF

Optimal Design for 3D Structures Using Artificial Intelligence : Its Application to Micro Accelerometer (인공지능을 이용한 3차원 구조물의 최적화 설계 : 마이크로 가속도계에 적용)

  • Lee, Joon-Seong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.445-450
    • /
    • 2004
  • This paper describes an optimal design system for multi-disciplinary structural design. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry technique, is incorporated into the system, together with a commercial FE analysis code and a commercial solid modelers. An optimum design solution or satisfactory solutions are then automatically searched using the genetic algorithms modified for real search space, together with the automated FE analysis system. With an aid of genetic algorithms, the present design system allows us to effectively obtain a multi-dimensional solutions. The developed system is successfully applied to the shape design of a micro accelerometer based on a tunnel current concept.

Development of a MEMS Resonant Accelerometer Based on Robust Structural Design (강건 구조설계에 기반한 미소 공진형 가속도계의 개발)

  • Park, U-Sung;Boo, Sang-Pil;Park, Soo-Young;Kim, Do-Hyung;Song, Jin-Woo;Jeon, Jong-Up;Kim, Joon-Won
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.114-120
    • /
    • 2012
  • This paper describes the design, fabrication and testing of a micromachined resonant accelerometer consisting of a symmetrical pair of proof masses and double-ended tuning fork(DETF) oscillators. Under the external acceleration along the input axis, the proof mass applies forces to the oscillators, which causes a change in their resonant frequency. This frequency change is measured to indicate the applied acceleration. Pivot anchor and leverage mechanisms are adopted in the accelerometer to generate larger force from a proof mass under certain acceleration, which enables increasing its scale factor. Finite element method analyses have been conducted to design the accelerometer and a silicon on insulator(SOI) wafer with a substrate glass wafer was used for fabricating it. The fabricated accelerometer has a scale factor of 188 Hz/g, which is shown to be in agreement with analysis results.

Resonant Loop Design and Performance Test for a Torsional MEMS Accelerometer with Differential Pickoff

  • Sung, Sang-Kyung;Hyun, Chul;Lee, Jang-Gyu
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2007
  • This paper presents an INS(Inertial Navigation System) grade, surface micro-machined differential resonant accelerometer(DRXL) manufactured by an epitaxially grown thick poly silicon process. The proposed DRXL system generates a differential digital output upon an applied acceleration, in which frequency transition is measured due to gap dependent electrical stiffness change. To facilitate the resonance dynamics of the electromechanical system, the micromachined DRXL device is packaged by using the wafer level vacuum sealing process. To test the DRXL performance, a nonlinear self-oscillation loop is designed based on the extended describing function technique. The oscillation loop is implemented using discrete electronic elements including precision charge amplifier and hard feedback nonlinearity. The performance test of the DRXL system shows that the sensitivity of the accelerometer is 24 Hz/g and its long term bias stability is about 2 mg($1{\sigma}$) with dynamic range of ${\sigma}70g$.