• 제목/요약/키워드: Micro/nano pattern

검색결과 124건 처리시간 0.026초

열방식 마이크로 임프린트 공정을 위한 고분자 재료의 수치적 모델링과 해석 (Numerical Investigation of Micro Thermal Imprint Process of Glassy Polymer near the Glass Transition Temperature)

  • 란 슈하이;이수훈;이혜진;송정한;성연욱;김무종;이문구
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.45-52
    • /
    • 2009
  • The research on miniature devices based on non-silicon materials, in particular polymeric materials has been attracting more and more attention in the research field of the micro/nano fabrication in recent years. Lost of applications and many literatures have been reported. However, the study on the micro thermal imprint process of glassy polymer is still not systematic and inadequate. The aim of this research I to obtain a numerical material model for an amorphous glassy polymer, polycarbonate (PC), which can be used in finite element analysis (FEA) of the micro thermal imprint process near the glass transition temperature (Tg). An understanding of the deformation behavior of the PC specimens was acquired by performing tensile stress relaxation tests. The viscoelastic material model based on generalized Maxwell model was introduced for the material near Tg to establish the FE model based on the commercial FEA code ABAQUS/Standard with a suitable set of parameters obtained for this material model form the test data. As a result, the feasibility of the established viscoelastic model for PC near Tg was confirmed and this material model can be used in FE analysis for the prediction and improvement of the micro thermal imprint process for pattern replication.

  • PDF

Ordered Micropatterns by Confined Dewetting of an Imprinted Polymer Thin Film and Their Microlens Application

  • Lee, Geun-Tak;Yoon, Bo-Kyung;Acharya, Himadri;Park, Cheol-Min;Huh, June
    • Macromolecular Research
    • /
    • 제17권3호
    • /
    • pp.181-186
    • /
    • 2009
  • We fabricated ordered micro/nano patterns induced by controlled dewetting on the topographically patterned PS/P4VP bilayer thin film. The method is based on utilizing microimprinting lithography to induce a topographically heterogeneous bilayer film that allows the controlled dewetting upon subsequent thermal annealing. The dewetting that was initiated strictly at the boundary of the thicker and thinner regions was guided by the presence of the topographic structure. The dewetting front velocity of the microdomains in the confined regions was linearly proportional to the measurement time, which enabled us to control the size of the dewet domain with annealing time. In particular, the submicron sized dot arrays between lines were generated with ease when the dewetting was confined into geometry with a few microns in size. The kinetically driven, non-lithographical pattern structures accompanied the pattern reduction to 400%. The pattern arrays on a transparent glass substrate were especially useful for non-circular microlens arrays where the focal length of the lens was easily tunable by controlling the thermal annealing.

$Ga^+$ 이온 빔 조사량에 따른 자기 조립 단분자막의 습식에칭 특성 (Effect of $Ga^+$ Ion Beam Irradiation On the Wet Etching Characteristic of Self-Assembled Monolayer)

  • 노동선;김대은
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.326-329
    • /
    • 2005
  • As a flexible method to fabricate sub-micrometer patterns, Focused Ion Beam (FIB) instrument and Self-Assembled Monolayer (SAM) resist are introduced in this work. FIB instrument is known to be a very precise processing machine that is able to fabricate micro-scale structures or patterns, and SAM is known as a good etch resistance resist material. If SAM is applied as a resist in FIB processing fur fabricating nano-scale patterns, there will be much benefit. For instance, low energy ion beam is only needed for machining SAM material selectively, since ultra thin SAM is very sensitive to $Ga^+$ ion beam irradiation. Also, minimized beam spot radius (sub-tens nanometer) can be applied to FIB processing. With the ultimate goal of optimizing nano-scale pattern fabrication process, interaction between SAM coated specimen and $Ga^+$ ion dose during FIB processing was observed. From the experimental results, adequate ion dose for machining SAM material was identified.

  • PDF

수분수집을 위한 초발수/초친수 복합 표면 제작: 그라비아 옵셋 프린팅과 콜로이달 리소그래피 공정 (Fabrication of a Hybrid Superhydrophobic/superhydrophilic Surface for Water Collection: Gravure Offset Printing & Colloidal Lithography)

  • 지승묵;김인영;김은희;정지은;김완두;임현의
    • 한국정밀공학회지
    • /
    • 제29권1호
    • /
    • pp.19-24
    • /
    • 2012
  • We demonstrate the desert beetle back mimicking hybrid superhydrophilic/superhydrophobic patterned surface by using the combination method of colloidal lithography and gravure offset printing for nano and micro patterning, respectively. The two methods are cost-effective and industrially available techniques compared to the other nano/micro patterning methods. To verify the water collecting function of the hybrid surface, the water condensation behavior is investigated on the chilled surface in ambient temperature and high humidity. Due to the synergetic effect of drop and film wise condensation, the hybrid superhydrophobic/superhydrophilic surface shows the higher efficiency than one of single wettability surfaces. The work is underway to get the good patterns of hybrid surfaces for water collecting from the dew or fog.

나노/마이크로 패턴 PDMS를 이용한 유방암 세포의 부착에 관한 연구 (Study on the Cell Adhesion of Breast Cancer Cells using Nano/Micro Patterning PDMS)

  • 곽도훈;김우철;진희원;윤완수;박상효;기재홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제40권5호
    • /
    • pp.165-170
    • /
    • 2019
  • Cancer cells are different from normal cells in terms of life cycle, behavior, and growth patterns. Cancer cells can migrate freely in the body through blood vessels and lymph nodes. The cancer cells easily interact with various substrates including extracellular matrix and vessels and they can differentiate in the new environment. However, it is not well known about the adhesion preference of cancer cells on the substrate and the mechanism of their interaction. In this study, we prepared the nano-, micro-patterned substrates using E-beam lithography techniques. MCF-7 cells were tested on the substrates to find out their adhesion preference. The substrates were made by polydimethylsiloxane (PDMS) with specific patterns including pillars with a diameter of 500 nm, 700 nm, $3{\mu}m$ and $5{\mu}m$. MCF-7 cells were seeded on the substrates and incubated for 24 hours. As a result, this study clearly demonstrated that the MCF-7 cells preferred 700 nm patterning.

미세 레이저 가공의 표면코팅 후 전해 에칭 (Laser Micro Machining and Electrochemical Etching After Surface Coating)

  • 김태풍;박민수
    • 한국정밀공학회지
    • /
    • 제30권6호
    • /
    • pp.638-643
    • /
    • 2013
  • Laser beam machining (LBM) is fast, contactless and able to machine various materials. So it is used to cut metal, drill holes, weld or pattern the imprinted surface. However, after LBM, there still leave burrs and recast layers around the machined area. In order to remove these unwanted parts, LBM process often uses electrochemical etching (ECE). But, the total thickness of workpiece is reduced because the etching process removes not only burrs and recast layers, but also the entire surface. In this paper, surface coating was performed using enamel after LBM on metal. The recast layer can be selectively removed without decreasing total thickness. Comparing with LBM process only, the surface quality of enamel coating process was better than that. And edge shape was also maintained after ECE.

Material Design for the Fabrication of Barrier Ribs with High Aspect Ratio of Plasma Display Panel by X-ray Lithography

  • Ryu, Seung-Min;Yang, Dong-Yol;So, Jae-Yong;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.989-992
    • /
    • 2008
  • X-ray lithography is one of the most powerful processes in the fabrication of nano/micro structures with a high aspect ratio. This process enables the fabrication of ultra-thin barrier ribs for PDP using X-ray sensitive paste. In this paper, organic material including photo-monomers, photo-oligomers, binder polymer and additives as well as inorganic powders with different size were optimized to fabricate high aspect ratio barrier rib pattern for PDP.

  • PDF

초음파장내 파괴적인 기포의 운동 가시화 (Visualization of Disruptive Bubble Behavior in Ultrasonic Fields)

  • 김태홍;박근환;김호영
    • 한국가시화정보학회지
    • /
    • 제9권1호
    • /
    • pp.17-19
    • /
    • 2011
  • The bubble oscillations play an important role in ultrasonic cleaning processes. In the ultrasonic cleaning of semiconductor wafers, the cleaning process often damages micro/nano scale patterns while removing contaminant particles. However, the understanding of how patterns in semiconductor wafers are damaged during ultrasonic cleaning is far from complete yet. Here, we report the observations of the motion of bubbles that induce solid wall damage under 26 kHz continuous ultrasonic waves. We classified the motions into the four types, i.e. volume motion, shape motion, splitting or jetting motion and chaotic motion. Our experimental results show that bubble oscillations get unstable and nonlinear as the ultrasonic amplitude increases, which may exert a large stress on a solid surface raising the possibility of damaging microstructures.

Novel 3D nanofabrication technique and its applications

  • 전석우
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.15.1-15.1
    • /
    • 2009
  • Nano transfer printing and micro contact printing is well known printing method based on soft lithography which uses conformal soft elastomer with designed surface relief structures. Here I introduce another class of novel 3D nanofabrication technique by using the same elastomer but in a different manner. The approach, which we refer to as proximity field nanopatterning, uses the surface-reliefed elastomers as phase masks to pattern thick layers of transparent, photosensitive materials. Aspects of the optics, the materials, and the physical chemistry associated with this method are outlined. A range of 3D structures illustrate its capabilities, and several application examples demonstrate possible areas of use in technologies ranging from microfluidics to photonic materials to density gradient structures for chemical release and high-energy density science.

  • PDF

TA-ESPI에 의한 외팔보의 탄성계수 측정 (Evaluation of Young's Modulus of a Cantilever Beam by TA-ESPI)

  • 이항서;김경석;강기수;정현철;양승필
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1115-1119
    • /
    • 2005
  • The paper proposes the elastic modulus evaluation technique of a cantilever beam by vibration analysis based on time-average electronic speckle pattern interferometry (TA-ESPI) with non-contact and nondestructive and Euler-Bernoulli equation. General approaches for the measurement of elastic modulus of thin film are Nano indentation test, Bulge test and Micro-tensile test and so on. They each have strength and weakness in the preparation of test specimen and the analysis of experimental result. ESPI has been developed as a common measurement method for vibration mode visualization and surface displacement. Whole-field vibration mode shape (surface displacement distribution) at a resonance frequency can be visualized by ESPI. And the maximum surface displacement distribution from ESPI is a clue to find the resonance frequency at each vibration mode shape. And the elastic modules of test material can be easily estimated from the measured resonance frequency and Euler-Bernoulli equation. The TA-ESPI vibration analysis technique is able to give the elastic modulus of materials through the simple processing of preparation and analysis.

  • PDF