Ordered Micropatterns by Confined Dewetting of an Imprinted Polymer Thin Film and Their Microlens Application

  • Lee, Geun-Tak (Department of Materials Science and Engineering, Yonsei University) ;
  • Yoon, Bo-Kyung (Department of Materials Science and Engineering, Yonsei University) ;
  • Acharya, Himadri (Department of Materials Science and Engineering, Yonsei University) ;
  • Park, Cheol-Min (Department of Materials Science and Engineering, Yonsei University) ;
  • Huh, June (Department of Materials Science and Engineering, Seoul National University)
  • Published : 2009.03.25

Abstract

We fabricated ordered micro/nano patterns induced by controlled dewetting on the topographically patterned PS/P4VP bilayer thin film. The method is based on utilizing microimprinting lithography to induce a topographically heterogeneous bilayer film that allows the controlled dewetting upon subsequent thermal annealing. The dewetting that was initiated strictly at the boundary of the thicker and thinner regions was guided by the presence of the topographic structure. The dewetting front velocity of the microdomains in the confined regions was linearly proportional to the measurement time, which enabled us to control the size of the dewet domain with annealing time. In particular, the submicron sized dot arrays between lines were generated with ease when the dewetting was confined into geometry with a few microns in size. The kinetically driven, non-lithographical pattern structures accompanied the pattern reduction to 400%. The pattern arrays on a transparent glass substrate were especially useful for non-circular microlens arrays where the focal length of the lens was easily tunable by controlling the thermal annealing.

Keywords

References

  1. S. J. Lee, Y. Son, C. H. Kim, and M. Choi, Macromol. Res., 15, 348 (2007) https://doi.org/10.1007/BF03218798
  2. Y. J. Yu, S. H. Lee, D. H. Choi, J. I. Jin, and N. Tessler, Macromol. Res., 15, 142 (2007) https://doi.org/10.1007/BF03218765
  3. C. H. Jang, Macromol. Res., 15, 263 (2007) https://doi.org/10.1007/BF03218785
  4. N. Lu, X. Chen, D. Molenda, A. Naber, H. Fuchs, D. V. Talapin, H. Weller, J. Muller, J. M. Lupton, J. Feldmann, A. L. Rogach, and L. Chi, Nano Lett., 4, 885 (2004) https://doi.org/10.1021/nl049719l
  5. M. Cavallini, J. Gomez-Segura, C. Albonetti, D. Ruiz-Molina, J. Veciana, and F. Biscarini, J. Phys. Chem. B, 110, 11607 (2006) https://doi.org/10.1021/jp061231g
  6. C. P. R. Dockendorf, T. Choi, and D. Poulikakos, Appl. Phys. Lett., 88, 131903 (2006) https://doi.org/10.1063/1.2187410
  7. B. K. Yoon, J. Huh, H. C. Kim, J. M. Hong, and C. M. Park, Macromolecules, 39, 901 (2006) https://doi.org/10.1021/ma051953q
  8. P. F. Green, J. Polym. Sci. Part B: Polym. Phys., 41, 2219 (2003) https://doi.org/10.1002/polb.10601
  9. X. Li, Y. Han, and L. An, Polymer, 44, 5833 (2003) https://doi.org/10.1016/S0032-3861(03)00585-8
  10. G. T. Carroll, M. E. Sojka, X. G. Lei, N. J. Turro, and J. T. Koberstein, Langmuir, 22, 7748 (2006) https://doi.org/10.1021/la0611099
  11. M. L. Chabinyc, W. S. Wong, A. Salleo, K. E. Paul, and R. A. Street, Appl. Phys. Lett., 81, 4260 (2002) https://doi.org/10.1063/1.1524301
  12. K. Y. Suh and R. Langer, Appl. Phys. Lett., 83, 1669 (2003)
  13. L. J. Heyderman, H. Schift, C. David, J. Gobrecht, and T. Schweizer, Microelectronic Engineering, 54, 229 (2000) https://doi.org/10.1016/S0167-9317(00)00414-7
  14. F. Brochard-Wyart, G. Debregeas, R. Fondecave, and P. Martin, Macromolecules, 30, 1211 (1997) https://doi.org/10.1021/ma960929x
  15. S. Qu, C. J. Clarke, Y. Liu, M. H. Rafailovich, J. Sokolov, K. C. Phelan, and G. Krausch, Macromolecules, 30, 3640 (1997) https://doi.org/10.1021/ma961297h
  16. P. Lambooy, K. C. Phelan, O. Haugg, and G. Krausch, Phys. Rev. Lett., 76, 1110 (1996) https://doi.org/10.1103/PhysRevLett.76.1110
  17. M. H. Wu, C. Park, and G. M. Whitesides, Langmuir, 18, 9312 (2002) https://doi.org/10.1021/la015735b
  18. P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, Appl. Phys. Lett., 88, 041120 (2006) https://doi.org/10.1063/1.2168245
  19. S. Scheinert, G. Paasch, M. Schodner, H. Roth, S. Senssfub, and T. Doll, J. Appl. Phys., 92, 330 (2002) https://doi.org/10.1063/1.1486253