• Title/Summary/Keyword: Micro/Nano Device

Search Result 81, Processing Time 0.031 seconds

Detection of Resonance Frequency of Micro Mechanical Devices Using Optical Method and Their Application for Mass Detection (광학적 방법을 통한 마이크로 역학 소자의 공진주파수 측정법과 이를 이용한 마이크로 캔티레버 공진기의 질량 변화 연구)

  • Kim, Hak-Seong;Lee, Sang-Wook
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.36-40
    • /
    • 2012
  • We have developed the detection method of the resonance frequency of micro/nano mechanical resonator using optical method. The optical interferometery method enabled us to detect the displacement change of resonators within several nm scale. The micro mechanical resonator was produced by attaching a micro mechanical cantilever to a piezo ceramic. The mass of cantilever was increased by evaporating Au using electron beam evaporator and the mass variation was estimated by detecting the resonance frequency changes.

Optical transition dynamics in ZnO/ZnMgO multiple quantum well structures with different well widths grown on ZnO substrates

  • Li, Song-Mei;Kwon, Bong-Joon;Kwack, Ho-Sang;Jin, Li-Hua;Cho, Yong-Hoon;Park, Young-Sin;Han, Myung-Soo;Park, Young-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.121-121
    • /
    • 2010
  • ZnO is a promising material for the application of high efficiency light emitting diodes with short wavelength region for its large bandgap energy of 3.37 eV which is similar to GaN (3.39 eV) at room temperature. The large exciton binding energy of 60 meV in ZnO provide provides higher efficiency of emission for optoelectronic device applications. Several ZnO/ZnMgO multiple quantum well (MQW) structures have been grown on various substrates such as sapphire, GaN, Si, and so on. However, the achievement of high quality ZnO/ZnMgO MQW structures has been somehow limited by the use of lattice-mismatched substrates. Therefore, we propose the optical properties of ZnO/ZnMgO multiple quantum well (MQW) structures with different well widths grown on lattice-matched ZnO substrates by molecular beam epitaxy. Photoluminescence (PL) spectra show MQW emissions at 3.387 and 3.369 eV for the ZnO/ZnMgO MQW samples with well widths of 2 and 5 nm, respectively, due to the quantum confinement effect. Time-resolved PL results show an efficient photo-generated carrier transfer from the barrier to the MQWs, which leads to an increased intensity ratio of the well to barrier emissions for the ZnO/ZnMgO MQW sample with the wider width. From the power-dependent PL spectra, we observed no PL peak shift of MQW emission in both samples, indicating a negligible built-in electric field effect in the ZnO/$Zn_{0.9}Mg_{0.1}O$ MQWs grown on lattice-matched ZnO substrates.

  • PDF

Microtube Light-Emitting Diode Arrays with Metal Cores

  • Tchoe, Youngbin;Lee, Chul-Ho;Park, Junbeom;Baek, Hyeonjun;Chung, Kunook;Jo, Janghyun;Kim, Miyoung;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.287.1-287.1
    • /
    • 2016
  • Three-dimensional (3-D) semiconductor nanoarchitectures, including nano- and micro- rods, pyramids, and disks, are emerging as one of the most promising elements for future optoelectronic devices. Since these 3-D semiconductor nanoarchitectures have many interesting unconventional properties, including the use of large light-emitting surface area and semipolar/nonpolar nano- or micro-facets, numerous studies reported on novel device applications of these 3-D nanoarchitectures. In particular, 3-D nanoarchitecture devices can have noticeably different current spreading characteristics compared with conventional thin film devices, due to their elaborate 3-D geometry. Utilizing this feature in a highly controlled manner, color-tunable light-emitting diodes (LEDs) were demonstrated by controlling the spatial distribution of current density over the multifaceted GaN LEDs. Meanwhile, for the fabrication of high brightness, single color emitting LEDs or laser diodes, uniform and high density of electrical current must be injected into the entire active layers of the nanoarchitecture devices. Here, we report on a new device structure to inject uniform and high density of electrical current through the 3-D semiconductor nanoarchitecture LEDs using metal core inside microtube LEDs. In this work, we report the fabrications and characteristics of metal-cored coaxial $GaN/In_xGa_{1-x}N$ microtube LEDs. For the fabrication of metal-cored microtube LEDs, $GaN/In_xGa_{1-x}N/ZnO$ coaxial microtube LED arrays grown on an n-GaN/c-Al2O3 substrate were lifted-off from the substrate by wet chemical etching of sacrificial ZnO microtubes and $SiO_2$ layer. The chemically lifted-off layer of LEDs were then stamped upside down on another supporting substrates. Subsequently, Ti/Au and indium tin oxide were deposited on the inner shells of microtubes, forming n-type electrodes of the metal-cored LEDs. The device characteristics were investigated measuring electroluminescence and current-voltage characteristic curves and analyzed by computational modeling of current spreading characteristics.

  • PDF

Systematic test on the effectiveness of MEMS nano-sensing technology in monitoring heart rate of Wushu exercise

  • Shuo Guan
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.155-163
    • /
    • 2023
  • Exercise is beneficial to the body in some ways. It is vital for people who have heart problems to perform exercise according to their condition. This paper describes how an Android platform can provide early warnings of fatigue during wushu exercise using Photoplethysmography (PPG) signals. Using the data from a micro-electro-mechanical system (MEMS) gyroscope to detect heart rate, this study contributes an algorithm to determine a user's fatigue during wushu exercise. It sends vibration messages to the user's smartphone device when the heart rate exceeds the limit or is too fast during exercise. The heart rate monitoring system in the app records heart rate data in real-time while exercising. A simple pulse sensor and Android app can be used to monitor heart rate. This plug-in sensor measures heart rate based on photoplethysmography (PPG) signals during exercise. Pulse sensors can be easily inserted into the fingertip of the user. An embedded microcontroller detects the heart rate by connecting a pulse sensor transmitted via Bluetooth to the smartphone. In order to measure the impact of physical activity on heart rate, Wushu System tests are conducted using various factors, such as age, exercise speed, and duration. During testing, the Android app was found to detect heart rate with an accuracy of 95.3% and to warn the user when their heart rate rises to an abnormal level.

Fabrication of nano/micro hybrid compositesusing a discharge flocking device (방전식모 장치를 이용한 나노/마이크로 하이브리드 복합재 제조)

  • Lee, Byung-Kon;Lee, Hak-Gu;Lee, Sang-Bok;Lee, Won-Oh;Yi, Jin-Woo;Um, Moon-Kwang;Kim, Byung-Sun;Byun, Joon-Hyung
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.13-18
    • /
    • 2010
  • One of the biggest challenges in the nano-field is how to effectively disperse nano-scale particles, especially CNTs, which are strongly agglomerated by intermolecular van der Waals forces. This study suggests a new method, discharge flocking, in order to disperse nano-scale particles effectively, which combines corona discharge phenomenon and a traditional electrostatic flocking process. In order to evaluate the discharge flocking process, composite specimens were fabricated by the process and RFI(resin film infusion) process, and then the mechanical and electrical properties of the specimens were measured and compared. Moreover, the evaluation of gas discharge effect on the CNTs and epoxy was performed to compare the mechanical and electrical properties of the composite specimens including the plasma treated CNTs. The experimental results showed that the electrical and mechanical properties of the specimens fabricated by the discharge flocking process were similar to those of the RFI process. In addition, plasma treated CNTs were not affected by gas discharge during the discharge flocking process.

Portable Amperometric Perchlorate Selective Sensors with Microhole Array-water/organic Gel Interfaces

  • Lee, Sang Hyuk;Kim, Hyungi;Girault, Hubert H.;Lee, Hye Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2577-2582
    • /
    • 2013
  • A novel stick-shaped portable sensing device featuring a microhole array interface between the polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) gel and water phase was developed for in-situ sensing of perchlorate ions in real water samples. Perchlorate sensitive sensing responses were obtained based on measuring the current changes with respect to the assisted transfer reaction of perchlorate ions by a perchlorate selective ligand namely, bis(dibenzoylmethanato)Ni(II) (Ni(DBM)2) across the polarized microhole array interface. Cyclic voltammetry was used to characterize the assisted transfer reaction of perchlorate ions by the $Ni(DBM)_2$ ligand when using the portable sensing device. The current response for the transfer of perchlorate anions by $Ni(DBM)_2$ across the micro-water/gel interface linearly increased as a function of the perchlorate ion concentration. The technique of differential pulse stripping voltammetry was also utilized to improve the sensitivity of the perchlorate anion detection down to 10 ppb. This was acquired by preconcentrating perchlorate anions in the gel layer by means of holding the ion transfer potential at 0 mV (vs. Ag/AgCl) for 30 s followed by stripping the complexed perchlorate ion with the ligand. The effect of various potential interfering anions on the perchlorate sensor was also investigated and showed an excellent selectivity over $Br^-$, $NO_2{^-}$, $NO_3{^-}$, $CO{_3}^{2^-}$, $CH_3COO^-$ and $SO{_4}^{2^-}$ ions. As a final demonstration, some regional water samples from the Sincheon river in Daegu city were analyzed and the data was verified with that of ion chromatography (IC) analysis from one of the Korean-certified water quality evaluation centers.

Development of an Inchworm type Actuator for an Ultra Precise Linear Stage (초정밀 리니어 스테이지용 인치웜 타입 구동장치 개발)

  • Moon, Chan-Woo;Lee, Sung-Ho;Chung, Jung-Kee;Lee, Jong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.309-312
    • /
    • 2002
  • Precision stage is essential device for semiconductor equipments, fiber optic assembly systems and micro machines. In this paper, we develop a piezo-electric inchworm type actuator for long stroke ultra precision linear stages, and implement a controller to interface with commercial motion controllers. It provides fast implementation of precise position control system substituting for rotary motor. In the future, using a laser interferometer as a position sensor, we plan to implement a nano meter precision stage.

  • PDF

The characteristics of bismuth magnesium niobate multi layers deposited by sputtering at room temperature for appling to embedded capacitor (임베디드 커패시터로의 응용을 위해 상온에서 RF 스퍼터링법에 의한 증착된 bismuth magnesium niobate 다층 박막의 특성평가)

  • Ahn, Jun-Ku;Cho, Hyun-Jin;Ryu, Taek-Hee;Park, Kyung-Woo;Cuong, Nguyen Duy;Hur, Sung-Gi;Seong, Nak-Jin;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.62-62
    • /
    • 2008
  • As micro-system move toward higher speed and miniaturization, requirements for embedding the passive components into printed circuit boards (PCBs) grow consistently. They should be fabricated in smaller size with maintaining and even improving the overall performance. Miniaturization potential steps from the replacement of surface-mount components and the subsequent reduction of the required wiring-board real estate. Among the embedded passive components, capacitors are most widely studied because they are the major components in terms of size and number. Embedding of passive components such as capacitors into polymer-based PCB is becoming an important strategy for electronics miniaturization, device reliability, and manufacturing cost reduction Now days, the dielectric films deposited directly on the polymer substrate are also studied widely. The processing temperature below $200^{\circ}C$ is required for polymer substrates. For a low temperature deposition, bismuth-based pyrochlore materials are known as promising candidate for capacitor $B_2Mg_{2/3}Nb_{4/3}O_7$ ($B_2MN$) multi layers were deposited on Pt/$TiO_2/SiO_2$/Si substrates by radio frequency magnetron sputtering system at room temperature. The physical and structural properties of them are investigated by SEM, AFM, TEM, XPS. The dielectric properties of MIM structured capacitors were evaluated by impedance analyzer (Agilent HP4194A). The leakage current characteristics of MIM structured capacitor were measured by semiconductor parameter analysis (Agilent HP4145B). 200 nm-thick $B_2MN$ muti layer were deposited at room temperature had capacitance density about $1{\mu}F/cm^2$ at 100kHz, dissipation factor of < 1% and dielectric constant of > 100 at 100kHz.

  • PDF

The compatible non-explosive separation device for various pre-loads using the Ni-Cr wire and Kevlar rope (다양한 사전하중에 적용할 수 있는 Ni-Cr wire와 Kevlar rope를 이용한 위성 분리장치)

  • Hwang, Hyun-Su;Kim, Byung-Kyu;Jang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.150-155
    • /
    • 2013
  • We present a kevlar rope based Non-Explosive Actuator(NEA) device which has simple structure and is activated by burning Ni-Cr wire. Through performance test, we find it can be operated under various pre-load by simply changing turn number of Ni-Cr wire. It shows release time of 680ms and shock level of 110G under pre-load of 6.0kN. Launching environment and space environment tests are planned to verify performance of the NEA based on European Satellite Agency test manual. Conclusively, we expect the proposed NEA can be applicable to release solar panel and fairing separation.

Permeability of the Lateral Air Flow through Unstructured Pillar-like Nanostructures (비정형 기둥 형상을 가진 나노구조에서의 가스 투과성 실험 연구)

  • Hyewon Kim;Hyewon Lim;Jeong Woo Park;Sangmin Lee;Hyungmo Kim
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.197-202
    • /
    • 2023
  • Recently, research on experimental and analytical techniques utilizing microfluidic devices has been pursued. For example, lab-on-a-chip devices that integrate micro-devices onto a single chip for processing small sample quantities have gained significant attention. However, during sample preparation, unnecessary gases can be introduced into the internal channels, thus, impeding device flow and compromising specific function efficiency, including that of analysis and separation. Several methods have been proposed to mitigate this issue, however, many involve cumbersome procedures or suffer from complexities owing to intricate structures. Recently, some approaches have been introduced that utilize hydrophobic device structures to remove gases within channels. In such cases, the permeability of gases passing through the structure becomes a crucial performance factor. In this study, a method involving the deposition and sintering of diluted Ag-ink onto a silicon wafer surface is presented. This is followed by unstructured nano-pattern creation using a Metal Assisted Chemical Etching (MACE) process, which yields a nanostructured surface with unstructured pillar shapes. Subsequently, gas permeability in the spaces formed by these surface structures is investigated. This is achieved by experiments conducted to incorporate a pressure chamber and measure gas permeability. Trends are subsequently analyzed by comparing the results with existing theories. Finally, it can be confirmed that the significance of this study primarily lies in its capability to effectively evaluate gas permeability through unstructured pillar-like nanostructures, thus, providing quantitative values for the appropriate driving pressure and expected gas removal time in practical device operation.