• Title/Summary/Keyword: Micelles

Search Result 335, Processing Time 0.028 seconds

A Study on the Micellization of Sodium Dodecyl Sulfate in 𝜔-Phenylakylammonium Salt Solution (𝜔-Phenylalkylammonium Salt의 수용액에서 Sodium Dodecyl Sulfate의 미셀에 관한 연구)

  • Ryu, Yeanho;Oh, Jung Hee
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.1041-1047
    • /
    • 1997
  • The influence of $\omega$-phenylalkylammonium salt on the critical micelle concentration (CMC) of SDS has been examined using the electric conductivity method. CMC of SDS exhibited the tendency to decrease with the length of alkyl group of additives. The effect of temperature on CMC of SDS in additive solutions has been observed in the range of $18^{\circ}C-50^{\circ}C$. The free energy(${\Delta}G_m^{\circ}$) for the micellization of SDS is negative and the entropy(${\Delta}S_m^{\circ}$) is a large positive value. The enthalpy(ΔHm0is positive in low temperature($18^{\circ}C$) and negative in high temperature($>25^{\circ}C$). In the prensence of organic additives, the micellization of SDS was considered as a spontaneous process and to involve a phase transition. The values of ΔGm0has shown the tendency to increase but the values of ${\Delta}S_m^{\circ}$ and ${\Delta}H_m^{\circ}$ to decrease with the length of alklyl group of additive salts. The changes in ${\Delta}\kappa$(difference of specific conductivity) with increasing mole ratio of additives in the mixed solutions indicated the formation of mixed micelles between SDS and additives. The effect of the length of alkyl chain on the micellization of SDS demonstrated the penetration of organic additives into the palisade layer of the SDS micelle.

  • PDF

Electronegativity and CMC Characteristics of Hydrophilic and Hydrophobic Group for Surfactants (계면활성제의 친수·소수성 그룹의 전기음성도와 CMC 특성)

  • Ha, Youn-Shick;Paek, U-Hyon;Chang, Yoon-Ho
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.914-919
    • /
    • 1997
  • On the basis of theory of Bratsch's electronegativity equalization, the electronegativity equalization, the group electronegativities and the group partial charges for anionic and nonionic surfactants could be calculated by using Pauling's electronegativity parameters. From calculated results, we have investigated how CMC, hydrophilic and hydrophobic groups, group partial charge, electronegativity of hydrophilic and hydrophobic groups, structural stability of micelle for anionic and nonionic surfactants are related. It was fround that CMC depends upon group partial charge and group electronegativity of hydrophilic and hydrophobic groups of surfactants. For the anionic surfactants, negative partial charge in hydrophobic group is delocalized as the carbon number in hydrophobic group increase. So negative partial charge of hydrophilic group has very large electronegativity that is decreased. And CMC decreases as hydration ability of hydrophilic groups which decreases relatively. For the nonionic surfactant, partial charge and electronegativity in hydrophobic group increases with the increment of carbon number in hydrophobic group. And CMC decreases because electronegativity of hydrophilic group is decreased with the increment of electronegativity of hydrophilic group. However, with the increase of repeating units in hydrophilic group, the negative partial charge of hydrophilic group increases. So CMC increases because surfactants hydrate rather than form micelles in aqueous solution by the increase of hydration ability.

  • PDF

A Study on Protein Separation with AOT-Isooctane Reverse Micellar System (AOT-Isooctane 역마이셀계를 이용한 단백질 분리에 관한 연구)

  • Rho, Young-Tae;Kim, Young-Sug;Cho, Hyung-Yong;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.542-548
    • /
    • 1989
  • For the selective separation of proteins, the solubilization and desolubilization of proteins in sodium-di-2-ethylhexyl sulfosuccinate (AOT)-isooctane reverse micellar system were investigated. Protein solubilization increased with increasing the concentration of AOT to 200 mM and then decreased above that concentration. Protein was solubilized into reverse micelles in the pH range below the isoelectric Point of each protein, pH 4-10 for lysozyme and pH 5-6 for trypsin and ${\alpha}-chymotrypsin$, Lysozyme, trypsin and ${\alpha}-chymotrypsin$ were efficiently extracted in the precence of KCl and NaCl while larger molecular weight proteins such as pepsin and BSA had high solubilization with $CaCl_2$. At higher ionic strength all proteins exhibited murk less tendency to solubilize and the increase of ionic strength resulted in the decrease of micelle size. Lysozyme was successfully back transfered at pH 12.2 and 1.0M KCl; trypsin at pH 12.6 and 0.5M KCl; and ${\alpha}-chymotrypsin$ at pH 6.7 and 0.5M KCl. In a test group separation experiments, complete separation of lysozyme from BSA could be obtained.

  • PDF

Flavor Entrapment Effect of Porous Starch and Sensory Characteristic of Boiled Instant Noodles Using Flavor-entrapped Porous Starch (다공성 전분의 향포접 효율과 이를 활용한 생면의 관능적 특성)

  • Kim, Hae-Yeun;Lee, Gyu-Hee;Kang, Hyun-Ah;Shin, Myung-Gon
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.658-662
    • /
    • 2007
  • In this study, wild sesame leaf aromas (WSLA) were extracted and the extracted aromas were entrapped in porous potato starch micelles. The entrapped aromas did not evaporate, even by heated water treatments, and remained until a physical treatment such as chewing. Thus, the entrapped WSLA starch was used to make precooked instant noodles in order to mask or/and reduce an unpleasant raw flour flavor. The efficiencies of the flavor entrapment were analyzed using gas-chromatography equipped with solid phase micro-extraction (SPME), as well as by sensory evaluation. The highest yield of the porous potato starch was shown as 82.4% at an inlet temperature (IT) of $170^{\circ}C$, an exhaust temperature (ET) of $90^{\circ}C$, and a feeding rate (FR) of 40 mL/min. In the porous starch made by IT at $200^{\circ}C$, ET at $100^{\circ}C$, and FR at 50 mL/min, the entrapment efficiency was 68% by GC analysis; this starch also had the highest WSLA and consumer acceptability, but the lowest raw flour flavor, according to the sensory evaluation results.

Thermodynamics of the Micellization of Cetylpyridinium Bromide in Some Aqueous Alcohol Solutions (몇 가지 알코올-수용액에서 Cetylpyridinium Bromide의 미셀화의 열역학적 성질)

  • Chung Jong-Jae;Lee Sang-Wook;Choi Joon-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.1
    • /
    • pp.49-54
    • /
    • 1993
  • The effects of added alcohols on the critical micelle concentration(CMC) of cetylpyridinium bromide(CPB) were investigated by the UV-Vis spectrophotometer at the temperature range of 8∼45$^{\circ}C$. The CMC of CPB was increased with the addition of methanol in the whole temperature region studied, while decreased with the addition of ethanol and propanol. The increase of CMC with the addition of methanol may be attributable to the increasing solvent power of the methanol-water mixture, because methanol was scarcely solubilized into the palisade layer of the micelle of CPB. The decrease of CMC with the inclusion of ethanol and propanol may be derived from the solubilization of alcohols into the micelles. On the other hand, the CMC was decreased with the temperature rise in the low-temperature region below about 25$^{\circ}C$, and the CMC was increased in the high-temperature region above that. The thermodynamic parameters (${\Delta}G_M^{\circ},\;{\Delta}H_M^{\circ},\;and\;{\Delta}S_M^{\circ}$) of the micellization of CPB were obtained in some aqueous alcohol solutions. In the whole temperature region (8∼45$^{\circ}C$), the values of ${\Delta}G_M^{\circ}$ were negative, while those of ${\Delta}S_M^{\circ}$ were positive. And in the temperature region below about 25$^{\circ}C$ the ${\Delta}H_M^{\circ}$ values were positive, while in the temperature region above that the values were negative.

  • PDF

A Study on the Solubilization of $\alpha$-Chymotrypsin Using AOT Reverse Micelles; Effects of pH and salts (AOT 역미셀을 이용한 $\alpha$-chymotrypsin의 가용화에 대한 연구;pH와 염의 영향)

  • 노선균;강춘형
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.664-669
    • /
    • 2000
  • Micellar aggregates are known to be useful for the selective isolation of biologically active materials such as amino acids, proteins, and enzymes from crude mixtures sparsely dispersed in water. In this study, the effects of pH, salt type and its concentration on the solubilization of $\alpha$-chymotrypsin into the organic micellar phase, which consisted of AOT (sodium 야(2-ethylhexy)sulfosuccinate) and iso-octane, were comprehensively examined. It was found that maximum extraction efficiency was attained at a pH below the isoelectric point of $\alpha$-chymotrypsin; at pH=5.0 for NaCl and KCl, and at pH=7.0 for $CaCl_2$and $MgCl_2$. In order to avoid complications stemming from the precipitationof protein at low pH interfaces, the protein concentrations in the organic and aqueous phases were directly measured. The size of the micelle water pool was estimated by measuring the molar ratio of the surfactant to the water, W(sub)o. The resulting values of W(sub)o were nearly constant at 30 and 19 for NaCl and KCl, respectively, and were independent of pH. The addition of 1:2 salts like $MgCl_2$and $CaCl_2$ led to much lower, but a constant value of, W(sub)o than the 1:1 salts.

  • PDF

Surface Chemistry in Biocompatible Nanocolloidal Particles (생체 적합한 나노입자와 계면화학)

  • Kim Jong-Duk;Jung Jae Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.295-305
    • /
    • 2004
  • Colloid and surface chemistry have been focused on surface area and surface energy. Local surface properties such as surface density, interaction, molecular orientation and reactivity have been one of interesting subjects. Systems of such surface energy being important would be listed as association colloid, emulsion, particle dispersion, foam, and 2-D surface and film. Such nanoparticle systems would be applied to drug delivery systems and functional cosmetics with biocompatible and degradable materials, while nanoparticles having its size of several nm to micron, and wide surface area, have been accepted as a possible drug carrier because their preparation, characteristics and drug loading have been inves-tigated. The biocompatible carriers were also used for the solubilization of insoluble drugs, the enhancement of skin absorption, the block out of UV radiation, the chemical stabilization and controlled release. Nano/micro emulstion system is classified into nano/microsphere, nano/microcapsule, nano/microemulsion, polymeric micelle, liposome according to its prep-aration method and size. Specially, the preparation method and industrial applications have been introduced for polymeric micelles self-assembled in aqueous solution, nano/microapsules controlling the concentration and activity of high concen-tration and activity materials, and monolayer or multilayer liposomes carrying bioactive ingredients.

Nucleophilic Effect of Alkylbenzimidazole and Micellar Effect of Cetylpyridinium chloride(CPyCl) on Dephosphorylation of Diphenyl-4-nitrophenylphosphinate(DPNPIN) (Diphenyl-4-nitrophenylphosphinate(DPNPIN)의 탈인산화반응에 미치는 Alkylbenzimidazole의 친핵적 및 Cetylpyridinium chloride(CPyCl) 미셀 촉매효과)

  • Kim, Jeung-Bea;Kim, Hak-Yoon
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.565-575
    • /
    • 2010
  • This study is mainly focused on micellar effect of cetylpyridinium chloride(CPyCl) solution including alkylbenzimidazole(R-BI) on dephosphorylation of diphenyl-4-nitrophenylphosphinate(DPNPIN) in carbonate buffer(pH 10.7). The reactions of DPNPIN with R-BI$^{\ominus}$ are strongly catalyzed by the micelles of CPyCl. Dephosphorylation of DPNPIN is accelerated by BI$^{\ominus}$ ion in $10^{-2}M$ carbonate buffer(pH 10.7) of $4{\times}10^{-3}M$ CPyCl solution up to 100 times as compared with the reaction in carbonate buffer by no BI solution of $4{\times}10^{-3}M$ CPyCl. The value of pseudo first order rate constant($k^m_{BI}$) of the reaction in CPyCl solution reached a maximum rate constant increasing micelle concentration. Such rate maxima are typical of micellar catalyzed bimolecular reactions. The reaction mediated by R-BI$^{\ominus}$ in micellar solutions are obviously slower than those by BI$^{\ominus}$, and the reaction rate were decreased with increase of lengths of alkyl groups. It seems due to steric effect of alkyl groups of R-BI$^{\ominus}$ in Stern layer of micellar solution. The surfactant reagent, cetylpyridinium chloride(CPyCl), strongly catalyzes the reaction of diphenyl-4-nitrophenylphosphinate(DPNPIN) with alkylbenzimidazole (R-BI) and its anion(R-BI$^{\ominus}$) in carbonate buffer(pH 10.7). For example, $4{\times}10^{-3}M$ CPyCl in $1{\times}10^{-4}M$ BI solution increase the rate constant ($k_{\Psi}=1.0{\times}10^{-2}sec^{-1}$) of the dephosphorylation by a factor ca.14, when compared with reaction ($k_{\Psi}=7.3{\times}10^{-4}sec^{-1}$) in $1{\times}10^{-4}M$ BI solution(without CPyCl). And no CPyCl solution, in $1{\times}10^{-4}M$ BI solution increase the rate constant ($k_{\Psi}=7.3{\times}10^{-4}sec^{-1}$) of the dephosphorylation by a factor ca.36, when compared with reaction ($k_{\Psi}=2.0{\times}10^{-5}sec^{-1}$) in water solution(without BI). This predicts that the reactivities of R-BI$^{\ominus}$ in the micellar pseudophase are much smaller than that of BI$^{\ominus}$. Due to the hydrophobicity and steric effect of alkyl group substituents, these groups would penetrate into the core of the micelle for stabilization by van der Waals interaction with long alkyl groups of CPyCl.

Effect of surfactant on the micelle process for the pre-purification of paclitaxel (Paclitaxel 전처리를 위한 마이셀 공정에서의 계면활성제 영향)

  • Jeon, Keum-Young;Kim, Jin-Hyun
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.557-560
    • /
    • 2008
  • The micelle process was developed for pre-purifying paclitaxel from plant cell cultures of Taxus chinensis, giving a high purity and yield. The approach in this work was to transfer paclitaxel in the crude extract to an aqueous surfactant solution as a micelle, allowing organic solvents to be used for removal of lipids and non-polar impurities. In this work, the effects of various surfactants such as CPC, CTMAC, LTMAC, SDS, AOT, Tween, PEG, and Triton were examined on the yield, purity, and phase separation time in micelle process. Among these surfactants, CTMAC (5%, w/v) gave the best result in terms of paclitaxel yield (${\sim}99%$), purity (${\sim}21%$), and phase separation time (30 min). The use of micelles in the pre-purification process allows for rapid and efficient separation of paclitaxel from interfering compounds and dramatically increases the yield and purity of crude paclitaxel for subsequent purification steps.

A Study on the Aggregation properties of Sodium hyaluronate with Alkanediyl-bis(dimethylalkylammonium bromide) surfactants in aqueous solution (수용액에서 Sodium hyaluronate와 Alkanediyl-bis(dimethylalkylammonium bromide) 계면활성제의 회합성질에 관한 연구)

  • Ahn, Beom-Shu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.1003-1009
    • /
    • 2021
  • A study on the associative properties of sodium hyaluronate (NaHA) and Alkane-bis (dimethylalkylammonium bromide) surfactants in aqueous solution was investigated in relation to the chemical structure of surfactants. As a result of measuring the interfacial tension, a parabolic graph showing the minimum value (cmin) at a specific concentration was shown. Above this minimum concentration the increase in interfacial tension is thought to be related to the formation of aggregates of NaHA chains and dimeric surfactants. The plot of viscosity vs surfactant concentration shows a slight maxium at cmin and a viscosity decrease at high surfactant concentrations. Viscosity nonlinear behavior is related to the size increase due to the complex growth and to the size shrinkage following from the interaction with electrolyte ions and free micelles. The results of surface tension measurements show a broad region of surface tension decrease, indicating the NaHA-surfactant interaction. The increase in surface tension above cmin may be related to the adsorption of clusters, consisting of free NaHA chains and dimeric surfactant. The strong adsorption of surfactant is observed at high concentrations.