• Title/Summary/Keyword: MgO Thin Film

Search Result 297, Processing Time 0.032 seconds

Effects of Oxygen on the Properties of Mg-doped Zinc Tin Oxide Films Prepared by rf Magnetron Sputtering (rf 마그네트론 스퍼터링으로 증착한 Mg-doped Zinc Tin Oxide막의 특성에 미치는 산소의 영향)

  • Park, Ki Cheol;Ma, Tae Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.373-379
    • /
    • 2013
  • Mg-doped zinc tin oxide (ZTO:Mg) thin films were prepared on glasses by rf magnetron sputtering. $O_2$ was introduced into the chamber during the sputtering. The optical properties of the films as a function of oxygen flow rate were studied. The crystal structure, elementary properties, and depth profiles of the films were investigated by X-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and secondary ion mass spectrometry (SIMS), respectively. Bottom-gate transparent thin film transistors were fabricated on $N^+$ Si wafers, and the variation of mobility, threshold voltage etc. with the oxygen flow rate were observed.

Low voltage operating $InGaZnO_4$ thin film transistors using high-k $MgO_{0.3}BST_{0.7}$ gate dielectric (고유전 $MgO_{0.3}BST_{0.7}$ 게이트 절연막을 이용한 $InGaZnO_4$ 기반의 트랜지스터의 저전압 구동 특성 연구)

  • Kim, Dong-Hun;Cho, Nam-Gyu;Chang, Young-Eun;Kim, Ho-Gi;Kim, Il-Doo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.40-40
    • /
    • 2008
  • $InGaZnO_4$ based thin film transistors (TFTs) are of interest for large area and low cost electronics. The TFTs have strong potential for application in flat panel displays and portable electronics due to their high field effect mobility, high on/off current ratios, and high optical transparency. The application of such room temperature processed transistors, however, is often limited by the operation voltage and long-tenn stability. Therefore, attaining an optimum thickness is necessary. We investigated the thickness dependence of a room temperature grown $MgO_{0.3}BST_{0.7}$ composite gate dielectric and an $InGaZnO_4$ (IGZO) active semiconductor on the electrical characteristics of thin film transistors fabricated on a polyethylene terephthalate (PET) substrate. The TFT characteristics were changed markedly with variation of the gate dielectric and semiconductor thickness. The optimum gate dielectric and active semiconductor thickness were 300 nm and 30 nm, respectively. The TFT showed low operating voltage of less than 4 V, field effect mobility of 21.34 cm2/$V{\cdot}s$, an on/off ratio of $8.27\times10^6$, threshold voltage of 2.2 V, and a subthreshold swing of 0.42 V/dec.

  • PDF

Structure of laser ablated $Ba_{0.8}Sr_{0.2}TiO_3$ thin films grown on MgO (레이저 증착법으로 MgO 기판에 성장한 $Ba_{0.8}Sr_{0.2}TiO_3$ 박막의 구조 연구)

  • Kim, Won-Jeong;Kim, Sang-Su;Hahn, Chang-Hee;Song, Tae-Kwon;Moon, Seung-Eon;Kwak, Min-Hwan;Kim, Young-Tae;Ryu, Han-Cheol;Lee, Su-Jae;Kang, Kwang-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.157-160
    • /
    • 2004
  • Ferroelectric $(Ba_xSr_{1-x})TiO_3$ (BST) thin films have been deposited on (001) MgO single crystals by a pulsed laser deposition (PLD) method. The structure of deposited BST thin films were investigated by an x-ray diffractometer. Calculated c-axis lattice parameters of the BST films exhibit a strong lattice distortion, which was not observed in ceramic BST at room temperature. This lattice distortion of BST has been attributed to strains caused by lattice constant difference between film and substrate, oxygen vacancies in BST film, and thermal expansion difference between film and substrate. Ferroelectric properties at 10 GHz have been measured using a HP 8510C vector network analyzer. Dielectric properties, capacitance tunability and quality factor, of the interdigitaed capacitors fabricated on BST films were calculated from the measured s-parameters. Two distinct behaviors in structural, opitical, and microwave properties of BST films were observed; below and above 200 mTorr of oxygen pressure in the deposition chmber.

  • PDF

The application of hydrated fine MgO particles for flux pinning center in the HTS-BSCCO system

  • 김성환;김철진;정준기;박성창;유재무
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.188-192
    • /
    • 2002
  • To introduce flux pinning center in HTS-BSCCO system, nano-size MgO particles were uniformly distributed within the Bi-2223 grain by partial hydration of MgO. The existing method MgO doped Bi-2223 used nato-size MgO powders, which resulted in agglomeration during mixing or grain growth during heat-treatment due to the high surface energy of the fine particles. By hydration of the MgO surface, the agglomeration of the MgO powders was avoided and the size of remaining MgO core was controlled by changing hydration medium and time. The thin film obtained by spin coating of (Bi_$1.8/Pb_{0.4}$)$Sr_2$$_{Ca}$$2.2/Cu_3$ $O_{y}$ nitrate solution mixed with hydrated MgO showed the even distribution of nano-size MgO particles in the Bi-2212 grains.s.s.

  • PDF

MBE Growth and Electrical and Magnetic Properties of CoxFe3-xO4 Thin Films on MgO Substrate

  • Nguyen, Van Quang;Meny, Christian;Tuan, Duong Ahn;Shin, Yooleemi;Cho, Sunglae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.370.1-370.1
    • /
    • 2014
  • Giant magnetoresistance (GMR), tunneling magnetoresistance (TMR), and magnetic random-access memory (MRAM) are currently active areas of research. Magnetite, Fe3O4, is predicted to possess as half-metallic nature, ~100% spin polarization (P), and has a high Curie temperature (TC~850 K). On the other hand, Spinel ferrite CoFe2O4 has been widely studies for various applications such as magnetorestrictive sensors, microwave devices, biomolecular drug delivery, and electronic devices, due to its large magnetocrystalline anisotropy, chemical stability, and unique nonlinear spin-wave properties. Here we have investigated the magneto-transport properties of epitaxial CoxFe3-xO4 thin films. The epitaxial CoxFe3-xO4 (x=0; 0.4; 0.6; 1) thin films were successfully grown on MgO (100) substrate by molecular beam epitaxy (MBE). The quality of the films during growth was monitored by reflection high electron energy diffraction (RHEED). From temperature dependent resistivity measurement, we observed that the Werwey transition (1st order metal-insulator transition) temperature increased with increasing x and the resistivity of film also increased with the increasing x up to $1.6{\Omega}-cm$ for x=1. The magnetoresistance (MR) was measured with magnetic field applied perpendicular to film. A negative transverse MR was disappeared with x=0.6 and 1. Anomalous Hall data will be discussed.

  • PDF

Characteristics of the Mg and In co-doped ZnO Thin Films with Various Substrate Temperatures (RF 마그네트론 스퍼터를 이용하여 제작한 MIZO 박막의 특성에 미치는 기판 온도의 영향)

  • Jeon, Kiseok;Jee, Hongsub;Lim, Sangwoo;Jeong, Chaehwan
    • Current Photovoltaic Research
    • /
    • v.4 no.4
    • /
    • pp.150-154
    • /
    • 2016
  • Mg and In co-doped ZnO (MIZO) thin films with transparent conducting characteristics were successfully prepared on glass substrates by RF magnetron sputtering technique. The Influence of different substrate temperature (from RT to $400^{\circ}C$) on the structural, morphological, electrical, and optical properties of MIZO thin films were investigated. The MIZO thin film prepared at the substrate temperature of $350^{\circ}C$ showed the best electrical characteristics in terms of the carrier concentration ($4.24{\times}10^{20}cm^{-3}$), charge carrier mobility ($5.01cm^2V^{-1}S^{-1}$), and a minimum resistivity ($1.24{\times}10^{-4}{\Omega}{\cdot}cm$). The average transmission of MIZO thin films in the visible range was over 80% and the absorption edges of MIZO thin films were very sharp. The bandgap energy of MIZO thin films becomes wider from 3.44 eV to 3.6 eV as the substrate temperature increased from RT to $350^{\circ}C$. However, Band gap energy of MIZO thin film was narrow at substrate temperature of $400^{\circ}C$.

Fabrication of Micro-Flow Sensors with High-response Time (고속응답 마이크로 유량센서의 제작)

  • Chung, Gwiy-Sang;Hong, Seok-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.17-20
    • /
    • 2000
  • This paper describes on the fabrication and characteristics of hot-film type micro-flowsensors integrated with Pt-RTD's and micro-heaters on the Si substrate, in which MgO thin-films were used as medium layer in order to improve adhesion of Pt thin-films to $SiO_2$ layer, The MgO layer improved adhesion of Pt thin-films to $SiO_2$ layer without any chemical reactions to Pt thin-films under high annealing temperatures. In investigating output characteristics of the fabricated micro-flowsensors, the output voltages increased as gas flow rate and its conductivity increased due to increase of heat-loss from sensor to external. Output voltage was 82 mV at $N_2$ flow rate of 2000 seem/min, heating power of 1.2W.

  • PDF

Bending Mode Multilayer Actuator Using Low Temperature Sintering Piezoelectric Ceramics (저온소결 세라믹을 이용한 밴더형 적층 액츄에이터의 제작)

  • Lee, Ju-Young;Kim, Sang-Jong;Kang, Chong-Yun;Kim, Hyun-Jai;Lee, Sang-Yoel;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.68-69
    • /
    • 2005
  • Low temperature ($\leq900^{\circ}C$) sintering piezoelectric ceramics $0.01Pb(Mg_{1/2}W_{1/2})O_3$-0.41Pb$(Ni_{1/3}Nb_{2/3})O_3-0.35PbTiO_3-0.23PbZrO_3+0.1wt%Y_2O_3+xwt%ZnO$ $(0{\leq}x{\leq}2.5)$ have been developed and investigated. The electromechanical coupling coefficient ($k_p$), piezoelectric constant ($d_{33}$), and mechanical quality factor ($Q_m$) have been measured to characterize the piezoelectric materials system. When 2.0 wt% ZnO is added, the properties of the system, $d_{33}$ = 559 pC/N, $k_p$ = 55.0 % and $Q_m$ = 73.4 are obtained which are very suitable for piezoelectric actuators. A bending mode multilayer actuator has been also developed using the materials which size is $27(L)\times9(W)\times1.07(t)mm^3$. The actuators are fabricated by multilayer ceramic (MLC) process and consist of24 layers and each layer thickness is $35{\mu}m$. At this time, the displacement of actuator was $100{\mu}m$ at 28V.

  • PDF

A Study on the Al2O3 Thin Film According to ALD Argon Purge Flow Rate and Application to the Encapsulation of OLED (ALD 아르곤 퍼지유량에 따른 Al2O3박막 분석 및 유기발광 다이오드 봉지막 적용에 관한 연구)

  • DongWoon Lee;Ki Rak Kim;Eou Sik Cho;Yong-min Jeon;Sang Jik Kwon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.23-27
    • /
    • 2023
  • Organic light-emitting diode(OLED) is very thin organic films which are hundreds of nanometers. Unlike bottom-emission OLED(BEOLED), top-emission OLED(TEOLED) emits light out the front, opaque moisture absorbents or metal foils can't be used to prevent moisture and oxygen. And it is difficult to have flexible characteristics with glass encapsulation, so thin film encapsulation which can compensate for those two disadvantages is mainly used. In this study, Al2O3 thin films by atomic layer deposition(ALD) were examined by changing the argon gas purge flow rate and we applied this Al2O3 thin films to the encapsulation of TEOLED. Ag / ITO / N,N'-Di-[(1-naphthyl)-N,N'-diphenyl]-1,1'-biphenyl-4,4'-diamine / tris-(8-hydroxyquinoline) aluminum/ LiF / Mg:Ag (1:9) were used to fabricate OLED device. The characteristics such as brightness, current density, and power efficiency are compared. And it was confirmed that with a thickness of 40 nm Al2O3 thin film encapsulation process did not affect OLED properties. And it was enough to maintain a proper OLED operation for about 9 hours.

  • PDF

Measurement of Sputtering Yield of $RF-O_2$ Plasma treated MgO Thin Films ($RF-O_2$ Plasma 처리한 MgO 박막의 스퍼터링 수율 측정)

  • Jeong, W.H.;Jeong, K.W.;Lim, Y.C.;Oh, H.J.;Park, C.W.;Choi, E.H.;Seo, Y.H.;Kim, Y.K.;Kang, S.O.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.3
    • /
    • pp.259-265
    • /
    • 2006
  • We measured sputtering yield of RF $O_2-plasma$ treated MgO protective layer for AC-PDP(plasma display panel) using a Focused ion Beam System(FIB). A 10 kV acceleration voltage was applied. The sputtering yield of the untreated sample and the treated sample were 0.33 atoms/ion and 0.20 atoms/ion, respectively. The influence of the plasma-treatment of MgO thin film was characterized by XPS and AFM analysis. We observed that the binding energy of the O 1s spectra, the FWHM of O 1s spectra and the RMS(root-mean-square) of surface roughness decreased to 2.36 eV, 0.6167 eV and 0.32 nm, respectively.