• Title/Summary/Keyword: Mg-foil

Search Result 26, Processing Time 0.021 seconds

Characteristics of Mineral Mg Dissolving Sensor in Edible Water using GMR-SV Device (거대자기저항 스핀밸브 소자를 이용한 음용수 미네랄 Mg 용해센서 특성 연구)

  • Lee, Ju-Hee;Kim, Da-Woon;Kim, Min-Ji;Park, Kwang-Seo;Kang, Joon-Ho;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.5
    • /
    • pp.174-179
    • /
    • 2008
  • The measurement dissolution sensor system using GMR-SV device with magnetic sensitivity of 0.8 %/Oe and Mg-film thick of 200 nm and Mg-foil thick of 50 mm was fabricated and characterized. During the water dissolving process of Mg-film and Mg-foil, the subtle variation of magnetic field by the decrease of current in solenoid was detected by the GMR-SV sensor. The variations of Mg bubble number and ORP as a function of time for three different kinds of edible, tap, and distilled water, are measured and compared. A After 45 min, the speed of fast dissolving Mg was shown the order of edible > tap > DI water. The variation of output magnetoresistance as a function of dissolved time of Mg-film and Mg-foil for edible water, which is composed of mineral content of $0.8{\sim}5.4\;mg/l$ was investigated. The response times for the dissolution in edible water were 5 min and 20 min, respectively. From the measurement of dissolving time and speed for Mg-film and Mg-foil using GMR-SV device, the mineral Mg sensor system in edible water can be possible to develop.

Influence of Mg Vapor Pressure on the $MgB_2$/Carbon Fiber Fabricated by Physical Vapor Deposition method

  • Li, Xiang;Ha, Hong-Soo;Kim, Cheol-Jin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.4
    • /
    • pp.5-9
    • /
    • 2011
  • We have fabricated the superconducting $MgB_2$/carbon fiber by physical vapor deposition method. Mg (Magnesium) and B (Boron) were simultaneously deposited on the carbon fiber using the RF-sputtering and thermal evaporation, respectively. To ensure the relatively high vapor pressure of Mg at the growth region and the subsequent phase stability of $MgB_2$ at the deposition temperature, inverted funnel-like guide made of Mg-foil was employed while one side of the guide were open for the sputtered B flux. Mg vapor pressure should be controlled precisely to secure the complete reaction. The $MgB_2$/carbon fiber showed a uniformly deposited thin layer with dense and well-formed grains. The $MgB_2$/carbon fibers in this study showed $T_c$~37.5K, $J_c$ ~ $2{\times}10^4\;A/cm^2$ in the 20K, 0T.

Fabrication and Sintering Characteristic of MgO-Al2O3-SiO2 System Ceramic Raw Materials(Mullite, Spinel and Cordierite) II. Powder and Mechanical Properties of Mg-Al Spinel Ceramics Prepared by Alkoxide (MgO-Al2O3-SiO2계 요업원료(Mullite, Spinel, Cordierite)의 제조 및 소결특성 II. Alkoxide로 제조한 Mg-Al Spinel분말 및 소결체의 특성)

  • 김창은;이홍림;안용진;김배연
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.593-600
    • /
    • 1989
  • Fine spinel powder was prepared from the Mg-Al double alkoxide synthesized using magnesium powder, aluminum foil and sec-butyl alcohol. This powder was compared with powder prepared by mixing two commercial alkoxides. The spinelization was started at 50$0^{\circ}C$ and was almost completed at 100$0^{\circ}C$ with a good crystallinity in the double alkoxide system. In mixed alkoxide system, homogeneous spinel powder was not obtained and MgO existed as a second phase because of solubility and hydrolysis rate differences of two alkoxides. The relative density of specimen prepared by double alkoxide was 99% and specimen prepared by mixed alkoxide was 95%. The modulus of rupture of specimens prepared by double alkoxide and mixed alkoxide was 49.9kg/$\textrm{mm}^2$ and 41.6kg/$\textrm{mm}^2$, respectively.

  • PDF

Preparation of Magnesium Oxide Nanowires from a Magnesium Foil (마그네슘 금속으로부터의 산화마그네슘 나노와이어 제조)

  • Lee, Byung Gun;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.514-517
    • /
    • 2011
  • Herein, we fabricated magnesium oxalate nanostructures by chemical etching of a magnesium foil in alcoholic solvents containing acidic media. Interestingly, we could obtain magnesium oxalate nanowires in ethanolic oxalic acid. Growth mechanism for magnesium oxalate nanowires was investigated in terms of etching time. Annealing conditions were determined from TGA results. Magnesium oxalate nanowires were converted to magnesium oxide nanowires by thermal treatment and the magnesium oxide nanowires were examined by FE-SEM and FT-IR measurement.

Chemical Characteristic of Glass Beads Excavated from Bakjimeure Site in Asan, Korea (아산 명암리 밖지므레 유적 출토 유리구슬의 화학적 특성)

  • Kim, Na Young;Kim, Gyu Ho
    • Journal of Conservation Science
    • /
    • v.28 no.3
    • /
    • pp.205-216
    • /
    • 2012
  • 65 samples of glass bead excavated from Mahan tombs of Asan Bakjimeure site consists of 13 of potash glass group and 52 of soda glass group and soda glass is superior in numbers. When classified according to color, purple blue glass bead is accompanied potash and soda glass group whereas purple glass bead is potash glass group and red, greenish blue, green and gold foil glass bead is soda glass group. Purple blue glass bead is classified as LCA type in which the content of the stabilizer is low. Of this, the soda glass categorized as LMK type with low content of MgO and $K_2O$ is determined that natron is used as the raw material. As to red glass, the homogeneous glass is LCA-B/HMK type and the heterogeneous glass is HCLA/LMK type. Thus, each of these two types are likely to be used plant ash and natron respectively. Greenish blue and green glass depends of the type that round glass is LCA-A/LMHK type and the segmented glass is LCA-B/HMK type. The gold foil glass bead is manufactured by the purity of 19.9~22.6K gold foil and the soda glass of HCLA/LMK type. In other words, the most of the glass bead of Asan Bakjimeure site is similar to the composition of the glass confirmed in other sites of the Baekche period. On the other hand, the greenish blue and green segmented bead and some red round bead is a different chemical composition is considered that the difference in raw materials. These characteristics is expected to be an important evidence for the understanding of the trade system of the ancient glass.

Growth of superconducting $MgB_2$ fibers for wire applications

  • Kim J. H.;Yoon H. R.;Jo W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.4
    • /
    • pp.1-3
    • /
    • 2005
  • Superconducting $MgB_2$ fibers are in-situ grown by a diffusion method. The fibers are prepared by exposing B filaments to Mg vapor inside a folded Ta foil over a wide range of temperature and growth time. The materials are sealed inside a quartz tube by gas welding. The as - grown fibers are characterized by scanning electron microscopy and energy dispersive x - ray analysis. The fibers have a diameter of about $110{\mu}m$. Surface morphology of the fibers looks dependent on growth temperature and mixing ratio of Mg and B. Radial distribution of Mg ions into B is observed and analyzed over the cross - sectional area. Transport properties of the $MgB_2$ fibers are examined by a physical property measurement system. The $MgB_2$ fibers grown at $900^{\circ}C$ for 2 hours show a superconducting transition at 39.8K with ${\Delta}T_c<$ 2.0 K. Resistance at room temperature $MgB_2$ is 3.745 $\Omega$ and residual resistivity ratio (RRR) is estimated as 4.723.

Fabrication of Ultra Fine MgO Particles Added BSCCO 2223 Tapes with Different Precursor Phase Constituent

  • Ko, Jae-Woong;Yoo, Jai-Moo;Kim, Hai-Doo;Chung, Hyung-Sik
    • Progress in Superconductivity
    • /
    • v.1 no.1
    • /
    • pp.56-60
    • /
    • 1999
  • Ultra fine MgO particles added BSCCO tapes were fabricated by tape casting using Doctor Blade Method and enclosed by silver foil for different starting compositions (that is, 2223 major, 2212 major). In order to obtain optimum microstructure, thermomechanical treatment was done. Microstructure and phase were analyzed by XRD, SEM and DTA. The critical current density was measured under magnetic field at 77K. The tapes fabricated from the precursor powder with BSCCO-2223 phase (>90%) result in a microstructure with a larger grain size and higher transport critical current density value under magnetic field at given thermomechanical treatment conditions.

  • PDF

Stabilities of Anthocyanin Pigmenta obtained from Crab Apple (Malus prunifolia Wild. Borkh. "Red Fruit") by Ethanol Extraction (꽃사과(Malus prunifolia Wild. Borkh. "Red Fruit")에서 에탄올 추출한 안토시안 색소의 안정성)

  • 김용환
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.1
    • /
    • pp.85-90
    • /
    • 1999
  • The characcteristics of anthocyanin pigments from crab apple (Malus prunifolia Wild. Borkh. "red fruit") by ethanol extract were investigated at various condition of light temperature sugar, organic acid me-tal ion and pH. The pigments were stable(over the 60%) on the light irradiation throughout 20 days sto-rage period at room temperature and in the pesenc of Al-foil red blue green and yellow cover were rage period at room temperature and in the pesence of Al-foil red blue green and yellow cover were very stable. The pigments also showed high thermal stbility(over the 67% at 115$^{\circ}C$ 10min) at pH2.5 respectively. The pigments with added organic acid greatly increased thickness of red color. The pig-ments with added metal ions at pH 2.5 such as Na+ K+, Mg2+ Ca2+ and Mn2+ were stable throughout 20 days storage period at $25^{\circ}C$. But Cu2+ addition showed the rapidly degradation of the pigments and Al3+ addition induced the color conversion from red to redish violet. The thickness of the red color of anthocyanin pigments increased increased as the pH decreased. These results indicated that crab apple antho-cyanin pigments might be potental source of natural food colorant. colorant.

  • PDF

A Study on the Diffusion Bonding of Mg-Ni under Low Eutectic Temperature (최소 공정온도하에서 Mg-Ni의 열확산 접합에 관한 연구)

  • Jin, Yeung Jun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • Diffusion bonding is a technique that has the ability to join materials with minimum change in joint micro-structure and deformation of the component. The quality of the joints produced was examined by metallurgical characterization and the joint micro-structure developed across the diffusion bonding was related to changes in mechanical properties as a function of the bonding time. An increase in bonding time also resulted in an increase in the micro-hardness of the joint interface from 55 VHN to 180 VHN, The increase in hardness was attributed to the formation of intermetallic compounds which increased in concentration as bonding time increased.

The Salt Removal Efficiency Characteristics of Carbon Electrodes Using Fabric Current Collector with High Tensile Strength in a Capacitive Deionization Process (인장강도가 뛰어난 직물집전체를 이용한 탄소전극의 축전식 탈염공정에서의 제염효과)

  • Seong, Du-Ri;Kim, Dae Su
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.466-473
    • /
    • 2020
  • Fabric current collector can be a promising electrode material for Capacitive Deionization (CDI) system that can achieve energy-efficient desalination of water. The one of the most attractive feature of the fabric current collector is its high tensile strength, which can be an alternative to the low mechanical strength of the graphite foil electrode. Another advantage is that the textile properties can easily make shapes by simple cutting, and the porosity and inter-fiber space which can assist facile flow of the aqueous medium. The fibers used in this study were made of woven structures using a spinning yarn using conductive LM fiber and carbon fiber, with tensile strength of 319 MPa, about 60 times stronger than graphite foil. The results were analyzed by measuring the salt removal efficiency by changing the viscosity of electrode slurry, adsorption voltage, flow rate of the aqueous medium, and concentration of the aqueous medium. Under the conditions of NaCl 200 mg/L, 20ml/min and adsorption voltage 1.5 V, salt removal efficiency of 43.9% in unit cells and 59.8% in modules stacked with 100 cells were shown, respectively. In unit cells, salt removal efficiency increases as the adsorption voltage increase to 1.3, 1.4 and 1.5 V. However, increasing to 1.6 and 1.7 V reduced salt removal efficiency. However, the 100-cell-stacked module showed a moderate increase in salt removal efficiency even at voltages above 1.5 V. The salt removal rate decreased when the flow rate of the feed was increased, and the salt removal rate decreased when the concentration of the feed was increased. This work shows that fabric current collector can be an alternative of a graphite foil.