• 제목/요약/키워드: Mg-Zn-Y

검색결과 2,338건 처리시간 0.034초

전도성 기판에 도입된 산화아연 나노월의 능동적 성장법과 전자소자

  • 김동찬;이주호;배영숙;최원철;조형균;이정용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.54-54
    • /
    • 2010
  • This article reports a spontaneous method for controlling the growth mode from vertically arrayed ultra-slim MgZnO nanowires to nanowalls through the Zn random motion of seeds formed by surface phase separation by Mg injection near an evaporation temperature of Zn. The random motion of single crystal MgZnO seeds with relative Zn rich phase played a vital role in the growth of the MgZnO nanowalls. The seeds were networked with increasing Zn flux compared with Mg flux and closing to the evaporation temperature of Zn on phase separation layers. We achieved fabrication of MgZnO nanowalls on various non- and conducting substrates by this advanced growth method. The MgZnO nanowalls hydrogen sensor showed an improved sensing performance compared to the MgZnO nanowires grown under the similar conditions. Based on the microstructural characterizations, the growth procedure and models for the evolution of the structure transition from MgZnO nanowires to nanowalls on the Si substrates are proposed for phased growth times.

  • PDF

Mg-Zn-(Zr) 합금의 미세조직과 결정립의 안정성 (Microstructures and Grain Stabilities of Mg-Zn-(Zr) Alloys)

  • 전중환
    • 열처리공학회지
    • /
    • 제23권6호
    • /
    • pp.309-314
    • /
    • 2010
  • Microstructures and grain growth behaviors at elevated temperatures have been investigated for extruded Mg-2%Zn and Mg-2%Zn-0.3%Zr alloys, in order to clarify the role of Zr in grain stability of Mg-Zn alloy. The grain size of Zr-free alloy increased continuously with an increase in annealing temperature, when isochronally annealed for 60 min from 573 to 723K, while the grains of the Zr-containing alloy were relatively stable up to 723 K. The activation energies for grain growth ($E_g$) between 573 and 723 K were calculated as 77.8 and 118.6 kJ/mole for the Mg-2%Zn and Mg-2%Zn-0.3%Zr alloys, respectively, which indicates that grains in the Zr-added alloy possess higher thermal stabilities at elevated temperatures. TEM observations on the annealed Mg-2%Zn and Mg-2%Zn-0.3%Zr alloys revealed that enhanced grain stability resulting from Zr addition into Mg-Zn alloy would be ascribed to the restriction of grain growth by stable Zn-Zr nano-precipitates distributed in the microstructure.

Plasma-PVD법에 의해 제작한 Zn-Mg합금 박막의 특성 분석 (Properties Analysis of Zn-Mg Alloy Thin Films Prepared by Plasma Enhanced PVD Method)

  • 이경희;배일용;김여중;문경만;이명훈
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.194-195
    • /
    • 2005
  • (100-x)Zn xMg alloy films are prepared onto cold-rolled steel substrates; where x ranged from 0 to about 38 atomic %. The alloy films show microcrystalline and grain structures respectively, according to preparation conditions such as composition ratio of zinc and magnesium or gas pressures etc.. And X-ray diffraction analysis indicates not only the presence of Zn-Mg thin films with forced solid solution but also the one of $MgZn_2$ alloy films partly. In addition the influence of Mg/Zn composition ratio and morphology of the Zn-Mg alloy films on corrosion behavior is evaluated by electro-chemical anodic polarization tests in deaerated 3% NaCl solution. From this experimental results, all the prepared Zn-Mg alloy films showed obviously good corrosion resistance to compare with 99.99% Zn and 99.99% Mg Ingots for evaporation metal. It is thought that the Zn-Mg films with effective forced solid solution prepared by plasma enhanced PVD method, produces smaller and denser grain structure so that may improve the formation of homogeneous passive layer in corrosion environment.

  • PDF

Cu 및 Si첨가에 의한 Mg-Zn합금계의 입자미세화 및 시효경화 (Grain Refining and Age Hardening of Mg-Zn Alloys by Addition of Cu and Si)

  • 황진환;남태현;안인섭;김유경;허경철;허보영
    • 한국재료학회지
    • /
    • 제5권6호
    • /
    • pp.682-689
    • /
    • 1995
  • Mg-Zn합금계의 입자미세화를 위하여 0.5-6 wt.% 조성범위의 Cu 및 Si를 첨가하였다. 합 잉곳트는 4 $\times$ $10^{-4}$ Torr의 진공의 BN을 내벽에 바른 석영관내에서 제조하였다. 제조된 합금을 435$^{\circ}C$에서 8시간 용체화처리한 후 결정립크기와 경도를 측정하였다. 측정결과 Mg-6wt.%Zn합금의 입자미세효과는 Cu가 2wt.%첨가될때, Si은 1.5wt.%가 첨가될 때가 최적의 조건이었다. Mg-6wt.% Zn과 Mg-6wt.%Zn-2wt.%Cu 및 Mg-6wt.%Zn-1.5wt.%Si합금을 시효열처리하여 시효거동을 조사하였다. 입자미세화에 의한 경도증가효과는 Mg-Zn-Cu합금계에서 크게 나타났으며 시효에 의한 경도증가 효과는 Mg-Zn-또합금계에서 크게 나타났다.

  • PDF

Rheo-Compocasting법으로 제조한 Mg/SiCp 복합재료의 조직 및 경도 특성에 미치는 Zn, Zr 첨가의 영향 (Effects of Zn, Zr Addition on Microstructures and Hardness of Mg/SiCp Composites Fabricated by Rheo-Compocasting)

  • 홍성길;최정철
    • 한국주조공학회지
    • /
    • 제15권6호
    • /
    • pp.588-595
    • /
    • 1995
  • SiC particles reinforced Mg-Zr, Mg-Zn and Mg-Zn-Zr composites were manufactured by Rheocompocasting method. Effects of Zn, Zr addition on microstructures and hardness were investigated by using the micro Vickers hardness tester, the optical and scanning electron microscopy. By the Zr addition to the pureMg/SiCp composites, SiC particles become more homogeneously dispersed and grain refined so that the micro hardness of the composite increased. In case of Zn addition, although grain refinement and homogeneous dispersion effects of SiC particles were not obtained, hardness was more increased than the only Zr added composite by the formation of many Mg-Zn intermetallic compounds at grain boundary. In the Mg-Zn-Zr/SiCp composite, the highest value of hardness was obtained by triple effects such as grain refining, dispersion hardening of SiC particles and Mg-Zn compounds.

  • PDF

Photoluminescence in MgO-ZnO Nanorods Enhanced by Hydrogen Plasma Treatment

  • Park, Sunghoon;Ko, Hyunsung;Mun, Youngho;Lee, Chongmu
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권11호
    • /
    • pp.3367-3371
    • /
    • 2013
  • MgO nanorods were fabricated by the thermal evaporation of $Mg_3N_2$. The influence of ZnO sheathing and hydrogen plasma exposure on the photoluminescence (PL) of the MgO nanorods was studied. PL measurements of the ZnO-sheathed MgO nanorods showed two main emission bands: the near band edge emission band centered at ~380 nm and the deep level emission band centered at ~590 nm both of which are characteristic of ZnO. The near band edge emission from the ZnO-sheathed MgO nanorods was enhanced with increasing the ZnO shell layer thickness. The near band edge emission from the ZnO-sheathed MgO nanorods appeared to be enhanced further by hydrogen plasma irradiation. The underlying mechanisms for the enhancement of the NBE emission from the MgO nanorods by ZnO sheathing and hydrogen plasma exposure are discussed.

용탕단조 Mg-Zn-Zr 합금의 미세조직 및 강화기구 (Microstructure and Strengthening Behavior in Squeeze Cast Mg-Zn by Addition of Zr)

  • 오상섭;황영하;김도향;홍준표;박익민
    • 한국주조공학회지
    • /
    • 제19권1호
    • /
    • pp.38-46
    • /
    • 1999
  • Microstructural characteristics and strengthening behavior in Mg-5wt%Zn-0.6wtZr alloys have been investigated by a combination of optical, secondary electron and transmission electron microscopy, differential thermal analysis, and hardness and tensile, creep property measurements. The result have been compared with those of Mg-5wt%Zn alloys. The as-squeeze cast microstructure consisted of dendrite ${\alpha}-Mg$, interdendrite or intergranular $Mg_7Zn_3$ and fine dispersoids of $ZnZr_2$. The size of secondary solidification phases in Mg-5wt%Zn-0.6wtZr alloys was significantly smaller than that of the Mg-5wt%Zn alloys due to the existence of fine dispersoid of $ZnZr_2$ which also effected the refinement of grain size. TEM study showed that the main cause of age hardening is formation of fine rodlike ${\beta}_1\;'$ precipitates as well as fine $ZnZr_2$ dispersoids. Due to the observed microstructural characteristics mechanical propeties of Mg-5wt%Zn-0.6wtZr alloys was found to be superior to those of Mg-5wt%Zn alloys.

  • PDF

Mg 함량에 따른 Zn-Mg 박막의 EIS 부식 특성에 관한 연구 (The study on the corrosion property of Zn-Mg alloy coatings with various Mg contents using EIS method)

  • 배기태;라정현;이상율;남경훈
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2014년도 추계학술대회 논문집
    • /
    • pp.224-224
    • /
    • 2014
  • 최근 기존의 아연 도금 강판의 성능을 향상시키기 위하여 다른 금속과의 합금 박막의 연구가 활발히 진행 중에 있다. 기존 아연 도금 강판에 비해 Mg를 함유한 Zn-Mg 합금 박막이 내식성이 우수하다고 알려져 있으며, 본 연구에서는 다양한 Mg 함량의 Zn-Mg 합금 타겟을 사용하여 Zn-Mg 박막을 합성하였다. 합성된 박막들의 내식성을 평가하기 위해서 Electrochemical Impedance Spectroscopy (EIS) 분석을 실시하였으며, 도출된 Nyquist plot 과 Bode phase angle plot 결과를 등가회로 피팅과 시뮬레이션을 실시하여 Mg 함량에 따른 Zn-Mg 박막의 내식성을 비교 분석하였다. Zn-Mg 박막은 Mg 함량이 증가할수록 내식성 또한 증가하였으며, 이는 Mg 함량에 따라 치밀해지는 미세구조에 의한 것으로 판단된다.

  • PDF

Effect of CaMgSn Ternary Phase on the Aging Response of Mg-Sn-Zn-Ca Alloys

  • Wahid, Shah Abdul;Lim, Hyun-Kyu;Jung, Young-Gil;Yang, Won-Seok;Ha, Seong-Ho;Yoon, Young-Ok;Kim, Shae K.
    • 한국주조공학회지
    • /
    • 제38권4호
    • /
    • pp.75-81
    • /
    • 2018
  • This study examined the effect of the CaMgSn ternary phase on the aging response of the Mg-Sn-Zn alloy. The results revealed that the CaMgSn ternary phase formed in rod-like or needle-like shapes in Mg-3Zn-0.3Ca-xSn (x=1.5, 3, and 5 wt%) alloys and its size decreased as the Sn content increased from 1.5 wt% to 5 wt%. The Mg-3Zn-0.3Ca-5Sn alloy with a relatively fine CaMgSn phase was subjected to solution heat treatment and an aging process. Both the Mg-5Sn-3Zn-0.3Ca and Mg-5Sn-3Zn (base alloy) alloys had similar peak hardness values throughout all aging temperatures but the time-to-peak hardness in the Mg-5Sn-3Zn-0.3Ca alloy was 24-36 hours-earlier than that in the base alloy. Precipitates in the Mg-5Sn-3Zn-0.3Ca alloy were more refined than those in the Mg-5Sn-3Zn alloy and were mostly formed on basal planes. The $Mg_2Sn$ phase formed in either plate-like or rod-like shapes in the Mg-5Sn-3Zn alloy, whereas block-shaped $Mg_2Sn$ particles also formed in the Mg-5Sn-3Zn-0.3Ca alloy.

가스 분사법으로 제조한 Mg-Zn-Y 합금의 플라즈마 전해 산화 피막 특성에 관한 연구 (Characteristics of Plasma Electrolytic Oxidation Coatings on Mg-Zn-Y Alloys Prepared by Gas Atomization)

  • 장시영;조한경;이두형;김택수
    • 한국분말재료학회지
    • /
    • 제14권6호
    • /
    • pp.372-379
    • /
    • 2007
  • The microstructure, mechanical and electrochemical properties of plasma electrolytic coatings (PEO) coatings on Mg-4.3 wt%Zn-1.0 wt%Y and Mg-1.0 wt%Zn-2.0 wt%Y alloys prepared by gas atomization, followed by compaction at 320 for 10 min under the pressure of 700 MPa and sintering at 380 and 420 respectively for 24 h, were investigated, which was compared with the cast Mg-1.0 wt%Zn alloy. All coatings consisting of MgO and $Mg_2SiO_4$ oxides showed porous and coarse surface features with some volcano top-like pores distributed disorderly and cracks between pores. In particular, the surface of coatings on Mg-1.0 wt%Zn-2.0 wt%Y alloy showed smaller area of pores and cracks compared to the Mg-4.3 wt%Zn-1.0 wt%Y and Mg-1.0 wt%Zn alloys. The cross section micro-hardness of coatings on the gas atomized Mg-Zn-Y alloys was higher than that on the cast Mg-1.0 wt%Zn alloy. Additionally, the coated Mg-1.0 wt%Zn-2.0 wt%Y alloy exhibited the best corrosion resistance in 3.5%NaCl solution. It could be concluded that the addition of Y has a beneficial effect on the formation of protective and hard coatings on Mg alloys by plasma electrolytic oxidation treatment.