DOI QR코드

DOI QR Code

Effect of CaMgSn Ternary Phase on the Aging Response of Mg-Sn-Zn-Ca Alloys

  • Received : 2018.07.12
  • Accepted : 2018.08.21
  • Published : 2018.08.31

Abstract

This study examined the effect of the CaMgSn ternary phase on the aging response of the Mg-Sn-Zn alloy. The results revealed that the CaMgSn ternary phase formed in rod-like or needle-like shapes in Mg-3Zn-0.3Ca-xSn (x=1.5, 3, and 5 wt%) alloys and its size decreased as the Sn content increased from 1.5 wt% to 5 wt%. The Mg-3Zn-0.3Ca-5Sn alloy with a relatively fine CaMgSn phase was subjected to solution heat treatment and an aging process. Both the Mg-5Sn-3Zn-0.3Ca and Mg-5Sn-3Zn (base alloy) alloys had similar peak hardness values throughout all aging temperatures but the time-to-peak hardness in the Mg-5Sn-3Zn-0.3Ca alloy was 24-36 hours-earlier than that in the base alloy. Precipitates in the Mg-5Sn-3Zn-0.3Ca alloy were more refined than those in the Mg-5Sn-3Zn alloy and were mostly formed on basal planes. The $Mg_2Sn$ phase formed in either plate-like or rod-like shapes in the Mg-5Sn-3Zn alloy, whereas block-shaped $Mg_2Sn$ particles also formed in the Mg-5Sn-3Zn-0.3Ca alloy.

Keywords

References

  1. Jeong JW, Im JS, Song K, Kwon MH, Kim SK, Kang YB and Oh SH, Acta Mater., "Transmission electron microscopy and thermodynamic studies of CaO-added AZ31 Mg alloys", 61 (2013) 3267-3277. https://doi.org/10.1016/j.actamat.2013.02.015
  2. Lee JK and Kim SK, Trans. Nonferrous Met. Soc. China, "Effect of CaO composition on oxidation and burning behaviors of AM50 Mg alloy", 21 (2011) 23-27. https://doi.org/10.1016/S1003-6326(11)61054-6
  3. C.L. Mendis, C.J. Bettles, M.A. Gibson and C.R. Hutchinson, Mater. Sci. Eng. A, "An enhanced age hardening response in Mg-Sn based alloys containing Zn", 435-436 (2006) 163-171. https://doi.org/10.1016/j.msea.2006.07.090
  4. Chaoqiang Liu, Houwen Chena and Jian Feng Nie, Scripta Mater., "Interphase boundary segregation of Zn in Mg-Sn-Zn alloys", 123 (2016) 5-8. https://doi.org/10.1016/j.scriptamat.2016.05.035
  5. M. Bamberger, J. Mater. Sci., "Phase formation in Mg-Sn-Zn alloys -thermodynamic calculations vs experimental verification", 41 (2006) 2821-2829. https://doi.org/10.1007/s10853-006-6294-4
  6. T.T. Sasaki, K. Ohishi, T. Ohkubo and K. Hono, Mater. Sci. Eng. A, "Effect of double aging and microalloying on the age hardening behavior of a Mg-Sn-Zn alloy", 530 (2011) 1-8. https://doi.org/10.1016/j.msea.2010.05.010
  7. Shanghai Wei, Tianping Zhu, Haibo Hou, Kim JH, Equo Kobayashi, Tatsuo Sato, Michael Hodgson and Wei Gao, Mater. Sci. Eng. A, "Effects of Pb/Sn additions on the agehardening behavior of Mg-4Zn alloys", 597 (2014) 52-61. https://doi.org/10.1016/j.msea.2013.12.048
  8. B. Rashkova, W.Prantl, R.Gorgl, J.Keckes, S.Cohen, M. Bamberger and G. Dehm, Mater. Sci. Eng. A, "Precipitation processes in a Mg-Zn-Sn alloy studied by TEM and SAXS", 494 (2008) 158-165. https://doi.org/10.1016/j.msea.2008.04.005
  9. S. Harosh, L.Miller, G.Levi and M.Bamberger, J. Mater. Sci., "Microstructure and properties of Mg-5.6%Sn-4.4%Zn-2.1%AlAlloy", 42 (2007) 9983-9989. https://doi.org/10.1007/s10853-007-2059-y
  10. Anton Gorny, Menahem Bamberger and Alexander Katsman, J. Mater. Sci., "High temperature phase stabilized microstructure in Mg-Zn-Sn alloys with Y and Sb additions", 42 (2007) 10014-10022. https://doi.org/10.1007/s10853-007-1998-7
  11. Yang Ming Bo, Cheng Liang and Pan Fu Sheng, Trans. Nonferrous Met. Soc. China, "Effects of calcium addition on as-cast microstructure and mechanical properties of Mg-5Zn-5Sn alloy", 20 (2010) 769-775. https://doi.org/10.1016/S1003-6326(09)60212-0
  12. X.F. Huang and W.Z. Zhang, Mater. Sci. Eng. A, "Improved age-hardening behavior of Mg-Sn-Mn alloy by addition of Ag and Zn", 552 (2012) 211-221. https://doi.org/10.1016/j.msea.2012.05.033
  13. Jian-Feng Nie, Metall. Mater. Trans. A, "Precipitation and hardening in magnesium alloys", 43A (2012) 3891-3939.
  14. Kim DH, Lee JY, Lim HK, Kyeong JS, Kim WT and Kim DH, Mater. Trans., "The effect of microstructure evolution on the elevated temperature mechanical properties in Mg-Sn-Ca system", 49 (2008) 2405-2413. https://doi.org/10.2320/matertrans.MER2008140
  15. I. Stulikova, B. Smola, F. von Buch and B. L. Mordike, Materials Science & Engineering Technology, "Development of creep resistant Mg?Gd?Sc alloys with low Sc content", 32 (2001) 20-24.
  16. Yang Wua, Qiang Chena and Xiangsheng Xia, Procedia Eng., "Isothermal precision forging of magnesium alloy components with high performance", 207 (2017) 896-901. https://doi.org/10.1016/j.proeng.2017.10.848
  17. Lee TW, Kim HG, So MG, Lee JK, Kim SK, Park WJ, Kim WY, Kim SS and Lim SH, J. Alloys Compd., "Microstructural evaluation of oxide layers in CaO-added Mg alloys", 635 (2015) 5-10. https://doi.org/10.1016/j.jallcom.2015.02.101
  18. S. Kamado, S. Iwasawa, K. Ohuchi, Y. Kojima and R. Ninomiya, Mater. Lett., "Effect of hot extrusion on mechanical properties of a Mg-Si-Al alloy", 19 (1994) 247-250. https://doi.org/10.1016/0167-577X(94)90165-1
  19. Guanglong X, Ligang Zhang, Libin Liu, Yong Du, Fan Zhang, Kai Xu, Shuhong Liu, Mingyue Tan and Zhanpeng Jin, Journal of Magnesium and Alloys, "Thermodynamic database of multi-component Mg alloys and its application to solidification and heat treatment", 4 (2016) 249-264. https://doi.org/10.1016/j.jma.2016.11.004
  20. Lee JK and Kim SK, Mater. Trans., "Effect of CaO Addition on the Ignition Resistance of Mg-Al Alloys", 52 (2011) 1483-1488. https://doi.org/10.2320/matertrans.M2010397