Browse > Article
http://dx.doi.org/10.12656/jksht.2010.23.6.309

Microstructures and Grain Stabilities of Mg-Zn-(Zr) Alloys  

Jun, Joong-Hwan (Production Technology R&D Division, Korea Institute of Industrial Technology)
Publication Information
Journal of the Korean Society for Heat Treatment / v.23, no.6, 2010 , pp. 309-314 More about this Journal
Abstract
Microstructures and grain growth behaviors at elevated temperatures have been investigated for extruded Mg-2%Zn and Mg-2%Zn-0.3%Zr alloys, in order to clarify the role of Zr in grain stability of Mg-Zn alloy. The grain size of Zr-free alloy increased continuously with an increase in annealing temperature, when isochronally annealed for 60 min from 573 to 723K, while the grains of the Zr-containing alloy were relatively stable up to 723 K. The activation energies for grain growth ($E_g$) between 573 and 723 K were calculated as 77.8 and 118.6 kJ/mole for the Mg-2%Zn and Mg-2%Zn-0.3%Zr alloys, respectively, which indicates that grains in the Zr-added alloy possess higher thermal stabilities at elevated temperatures. TEM observations on the annealed Mg-2%Zn and Mg-2%Zn-0.3%Zr alloys revealed that enhanced grain stability resulting from Zr addition into Mg-Zn alloy would be ascribed to the restriction of grain growth by stable Zn-Zr nano-precipitates distributed in the microstructure.
Keywords
Mg-Zn alloy; Zr; grain growth; thermal stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Jia, G. Hu, B. Forbord and J. K. Solberg : Mater. Sci. Eng. A, 483-484 (2008) 195.   DOI
2 M. Qian and A. Das : Scripta Mater., 54 (2006) 881.   DOI   ScienceOn
3 Y. C. Lee, A. K. Dahle ad D. H. StJohn : Metall. Mater. Trans. A, 31 (2000) 2895.   DOI   ScienceOn
4 M. Shahzad and L. Wagner : Scripta Mater., 60 (2009) 536.   DOI   ScienceOn
5 W. N. Tang, R. S. Chen and E. H. Han : J. Alloy. Comp., 477 (2009) 636.   DOI
6 M. Sun, G. Wu, W. Wang and W. Ding : Mater. Sci. Eng. A, 523 (2009) 145.   DOI
7 J. H. Jun, Submitted to J. Korean Society for Heat Treatment.
8 H. K. Kim and W. J. Kim : Mater. Sci. Eng. A, 385 (2004) 300.   DOI
9 X. Gao and J. F. Nie : Scripta Mater., 57 (2007) 655.   DOI   ScienceOn
10 J. S. Chun and J. G. Byrne : J. Mater. Sci., 4 (1969) 861.   DOI
11 C. J. Bettles, M. A. Gibson and K. Venkatesan : Scripta Mater., 51 (2004) 193.   DOI   ScienceOn
12 H. Okamoto : "Phase diagrams for binary alloys", ASM International, Materials Park, OH, p. 558.
13 J. Pelcova, B. Smola and I. Stulikova : Mater. Sci. Eng. A, 462 (2007) 334.   DOI
14 S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita and T.G. Langdon : Acta Mater., 50 (2002) 553.   DOI   ScienceOn
15 R. Z. Valiev, D. A. Salimonenko, N. K. Tsenev, P. B. Berbon, and T. G. Langdon : Scripta Mater., 37 (1997) 1945.   DOI   ScienceOn
16 K. E. Knipling, D. C. Dunand and D. N. Seidman : Acta Mater., 56 (2008) 114.   DOI   ScienceOn
17 J. L. Ning and D. M. Jiang : Mater. Sci. Eng. A, 452-453 (2007) 552.   DOI
18 P. Sepehrband, R. Mahmudi and F. Khomamizadeh : Scripta Mater., 52 (2005) 253.   DOI   ScienceOn