• Title/Summary/Keyword: Mg-Zn

Search Result 2,531, Processing Time 0.032 seconds

Quasicrystals And Related Approximant Phases in Mg-Zn-Y (Mg-Zn-Y 합금에서 준결정 및 준결정 유사상)

  • Park, Eun-Soo;Ok, Jae-Bum;Kim, Won-Tae;Kim, Do-Hyang
    • Applied Microscopy
    • /
    • v.32 no.1
    • /
    • pp.31-37
    • /
    • 2002
  • As-cast microstructure of Mg-rich $Mg_{68}Zn_{28}Y_4$ has been investigated by a detailed transmission electron microscopy. The as-cast $Mg_{68}Zn_{28}Y_4$ alloy consisted of three different types of phases: $10{\sim}20{\mu}m$ size primary solidification phase, dendritic phase grown from the primary phase and a eutectic structure formed at the later stage of solidification. The primary solidification phase has an icosahedral structure with a large degree of phason strain. 1/1 rhombohedral approximant phase with lattice parameters: $a=27.2{\AA}\;and\;{\alpha}=63.43^{\circ}$ is first observed in Mg-Zn-Y system. The rhombohedral structure can be obtained by introducing phason strain in the six dimensional face centered hyper-cubic lattice. The decagonal phase nucleates with orientation relationship with the icosahedral phase, and $Mg_4Zn_7$ nucleates with orientation relationship with the decagonal phase, indicating a close structural similarity between the three phases. Gradual depletion of Y during solidification plays an important role in heterogeneous nucleation of decagonal and $Mg_4Zn_7$ phases from icosahedral and decagonal phases respectively.

Characterization of Highly Conducting ZnMgBeGaO/Ag/ZnMgBeGaO Transparent Conductive Multilayer Films with UV Energy Bandgap

  • Le, Ngoc Minh;Hoang, Ba Cuong;Lee, Byung-Teak
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.695-698
    • /
    • 2017
  • ZnMgBeGaO/Ag/ZnMgBeGaO multilayer structures were sputter grown and characterized in detail. Results indicated that the electrical properties of the ZnMgBeGaO films were significantly improved by inserting an Ag layer with proper thickness (~ 10 nm). Structures with thicker Ag films showed much lower optical transmission, although the electrical conductivity was further improved. It was also observed that the electrical properties of the multilayer structure were sizably improved by annealing in vacuum (~35 % at $300^{\circ}C$). The optimum ZnMgBeGaO(20nm)/Ag(10nm)/ZnMgBeGaO(20nm) structure exhibited an electrical resistivity of ${\sim}2.6{\times}10^{-5}{\Omega}cm$ (after annealing), energy bandgap of ~3.75 eV, and optical transmittance of 65 % ~ 95 % over the visible wavelength range, representing a significant improvement in characteristics versus previously reported transparent conductive materials.

Characterization of Extrusion Parts for after Pre-aging Treatment in an Al-4.8Zn-1.3Mg Alloy (안정화 열처리에 의한 Al-4.8Zn-1.3Mg계 합금 압출재 특성 평가)

  • Lee, Chang-Yeon
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.818-823
    • /
    • 2018
  • In this study, the effect of pre-aging treatment for inhibition of natural aging of Al-4.8Zn-1.3Mg alloy by extrusion process was investigated. Firstly, the as-cast microstructure of Al-4.8Zn-1.3Mg alloy billet and its evolution during homogenization($460^{\circ}C$, $4h+510^{\circ}C$, 5h) were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), hardness analysis. The as-cast microstructures of Al-4.8Zn-1.3Mg alloy reveal $Mg_2Zn$, $Al_5Cu$, $Al_{13}Cu$ formed between dendrities. After homogenization, MgZn, $Al_4Cu$, $Al_{13}Cu$ phases precipitated into the matrix. In addition, standard deviation of homogenized billet was improved than as-cast billet from 2.62 to 0.99. According to pre-aging($100^{\circ}C$, 1h) Al-4.8Zn-1.3Mg alloy by extrusion process, yield strength and tensile strength deviation improved more than condition by natural aging.

Variations of Reaction Sequence with Precusor Mixing Methods in the Formation of $Pb(Zn_{0.6}Mg_{0.4})_{1/3}Nb_{2/3}O_3$[PZMN] ($Pb(Zn_{0.6}Mg_{0.4})_{1/3}Nb_{2/3}O_3$[PZMN] 합성시 전구체 혼합방법에 따른 반응 경로변화)

  • 김봉철;김정주;김남경;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.458-464
    • /
    • 1998
  • Variations of reaction sequence of $Pb(Zn_{0.6}Mg_{0.4})_{1/3}Nb_{2/3}O_3$[PZMN] with precusor mixing methods were ex-amined using X-ray diffraction and dielectric characteristics. In the present study three different types of precursor mixing methods (oxide mixing PbO+$ZnNb_2O_6+MgNb_2O_6$[Zn+MN] and PbO+(Zn,Mg)$Nb_2O_6$[ZMN] precursor mixing) were adopted. When the oxide mixing method was used for the PZMN synthesis a Zn-rich perovskite phase and pyrochlore phase were formed. Compared with PbO+ZN+MN precursor mixing method the PbO-ZMN precursor led to a lowering of the formation temperature for perovskite sin-gle phase. These variation of composition and formation temperature of the perovskite phase were dis-cussed in terms of the difference in the solid-reaction requence between these three different types of pre-cursor mixing.

  • PDF

Optical Properties of ZnO-ZnMgO Quantum Wells Grown by Atomic Layer Deposition Technique (원자층 증착법으로 성장한 ZnO-ZnMgO 양자우물의 광전이 특성)

  • Shin, Y.H.;Kim, Yongmin
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • We fabricated ZnO-ZnMgO single quantum well (SQW) samples having different well-widths by using the atomic layer deposition technique. The QW samples exhibit different optical transition behaviors with different QW widths. We confirm that when the well-width of 1.5 nm does not have a confined quantum energy level due to the Mg diffusion into the well caused by after-thermal treatment whereas the QWs wider than 1.5 nm show optical transitions between the confined energy levels.

Effect of Zn Addition on Corrosion Behavior of Mg-8%Al Casting Alloy (Mg-8%Al 주조 합금의 부식 거동에 미치는 Zn 첨가의 영향)

  • Hwang, In-Je;Moon, Jung-Hyun;Jun, Joong-Hwan;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.35 no.3
    • /
    • pp.53-61
    • /
    • 2015
  • Effects of Zn addition on the microstructure and corrosion behavior of Mg-8%Al-(0-1)%Zn casting alloys were investigated. With increasing Zn content, the amount of ${\beta}(Mg_{17}Al_{12})$ phase increased, while ${\alpha}$-(Mg) dendritic cell size became reduced. The corrosion rate decreased continuously with the increase in the Zn content. The evaluation of the microstructural evolution indicates that the improved barrier effect of ${\beta}$ particles formed more continuously along the dendritic cell boundaries and the incorporation of more ZnO into the surface corrosion product, by which the absorption of $Cl^-$ ions is impeded, are responsible for the better corrosion resistance in relation to the Zn addition.

Corrosion Behavior of Zn-Al-Mg Alloy Coated Steel Exposed to Residential Water (일상 생활용수 내 Zn-Al-Mg계 합금도금강재의 부식거동)

  • Jae Won Lee;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.387-392
    • /
    • 2023
  • The objective of this study was to evaluate corrosion resistance of Zn-Al-Mg alloy coated steel in residential water with trace quantities of Cl-. Comparative evaluations were performed using two commercial coated steel products, GI and Galvalume, as reference samples. Examination of corrosion morphology and measurement of weight loss revealed that the Zn-Al-Mg alloy coated steel exhibited higher corrosion resistance than reference samples. This finding suggests that the alloy coated steel possesses long-term corrosion resistance not only in highly Cl- concentrated environments such as seawater, but also in environments with extremely low levels of Cl- found in residential water. The primary factor contributing to the superior corrosion resistance of the Zn-Al-Mg alloy coated steel in residential water is the formation of an inhibiting corrosion product composed primarily of two phases: Zn5(OH)6(CO3)2 and Zn5(OH)8Cl2·H2O. The preferential dissolution of Mg from the corroded coating layer can increase alkalinity, which might enhance the thermodynamical stability of Zn5(OH)6(CO3)2.

Heavy Metal Uptake of Acacia from Tailing soil in Abandoned Jangun Mine, Korea (장군광산 광미 토양으로부터 아카시아의 중금속 전이에 관한 연구)

  • Jeong, Hong-Yun;Kim, Young-Hun;Kim, Jeong-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.173-185
    • /
    • 2015
  • Janggun mine (longitude $129^{\circ}$ 03'38.91" Latitude $36^{\circ}$ 51'31.59") had been operated as an underground mine for last few decades. As the part of the remediation process, the surface of tailing dump was covered with uncontaminated soil about 20 cm in depth and acacia trees were planted. Heavy metal uptake of acacia from tailing soil has continued for the past 15 years. Heavy metal concentration ranges of tailing soil that contaminated with As (66.43-9325.34 mg/kg), Cd (0.96-1.09 mg/kg), Cu (16.90-57.60 mg/kg), Pb (57.33-945.67 mg/kg), and Zn (154.48-278.61 mg/kg) have higher than those of control soil As (38.98 mg/kg), Cd (0.42 mg/kg), Cu (10.26 mg/kg), Pb (8.21 mg/kg), Zn (46.74 mg/kg). The As, Cd, Cu, Pb and Zn concentrations of leaf of acacia in highly contaminated tailing dump were 165.95, 0.04, 10.68, 3.18, 48.11 mg/kg, respectively. The metal contents of leaf of acacia tree that obtained from uncontaminated control soil are 1.31 of As, 3.90 of Cu, 0.22 of Pb and 11.01 mg/kg of Zn. It was investigated that in the acacia tree, heavy metals such as As, Cu, Pb and Zn tend to be more highly concentrated in bark and leaf, compared with sapwood and heartwood.

New Corrosion-Resistant Zn-Al-Mg Alloy Hot-Dip Galvanized Steel Sheet

  • Kohei Tokuda;Yasuto Goto;Mamoru Saito;Hiroshi Takebayashi;Takeshi Konishi;Yuto Fukuda;Fumiaki Nakamura;Koji Kawanishi;Kohei Ueda;Hidetoshi Shindo
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.121-130
    • /
    • 2024
  • In recent years, Zn-Al-Mg alloy galvanized steel sheets have been widely used as coated steel sheets to support social capital in the infrastructure field. A feature of Zn-Al-Mg alloy-coated steel sheets is that they provide a better corrosion protection period than Zn-coated steel sheets. In this study, the corrosion resistance of a new Zn-Al-Mg alloy-coated steel sheet was investigated and compared to that of conventional commercially available coated steel sheets. The investigation confirmed that increasing the Mg concentration in the Zn-Al-Mg-coated steel sheet improved corrosion resistance, which was more than 10 times that of the galvanized steel sheet specified in JIS G 3302. The study findings also confirmed that the corrosion resistance reached more than twice that of the coated steel sheet specified in JIS G 3323. If such galvanized steel sheets are applied to social infrastructures that are exposed to severely corrosive environments, the service life of the infrastructure might be extended.

Optical Properties of a ZnO-MgZnO Quantum-Well

  • Ahn, Do-Yeol;Park, Seoung-Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.125-130
    • /
    • 2006
  • The optical gain and the luminescence of a ZnO quantum well with MgZnO barriers is studied theoretically. We calculated the non-Markovian optical gain and the luminescence for the strained-layer wurtzite quantum well taking into account of the excitonic effects. It is predicted that both optical gain and luminescence are enhanced for the ZnO quantum well when compared with those of InGaN-AlGaN quantum well structure due to the significant reduction of the piezoelectric effects in the ZnO-MgZnO systems.