• Title/Summary/Keyword: Mg-Ni 합금

Search Result 63, Processing Time 0.021 seconds

Properties of Bulk and Powder of $Al_{86}Ni_6Ce_4Mg_4$ Amorphous Alloy Produced by He Gas Atomization (헬륨가스분사법으로 제조된 $Al_{86}Ni_6Ce_4Mg_4$ 비정질합금 분말과 성형재의 특성)

  • Bae, Cha-Hurn;Kim, Sung-Gyoo;Lee, Byung-Woo;Park, Heung-Il;Jeong, Hae-Yong
    • Journal of Korea Foundry Society
    • /
    • v.17 no.2
    • /
    • pp.158-163
    • /
    • 1997
  • Properties of $Al_{86}Ni_6Ce_4Mg_4$ alloy powder produced by helium gas atomization process were investigated by using DSC, XRD, SEM and TEM. The powders below 32 ${\mu}m$ in diameter were identified as an amorphous phase mixed with a ${\alpha}-Al$ phase. $Al_{86}Ni_6Ce_4Mg_4$ bulk alloy was manufactured by hot extruding the alloy powders at various temperatures, and the estimation of its mechanical properties was carried out subsequently. As a result, the bulk alloy extruded at the temperature below $450^{\circ}C$ exhibited the microstructure in which the near-spherical shape of some powders below 20 ${\mu}m$ were nearly unchanged and fine voids between matrix and powders were formed during extrusion process. On the other hand, the tensile strength and elongation at room temperature for $Al_{86}Ni_6Ce_4Mg_4$ bulk alloy extruded at $450^{\circ}C$ were 750 MPa and 7.5%, respectively.

  • PDF

Evaluations of Microstructure and Hydrogenation Properties on $Mg_2NiH_x$ ($Mg_2NiH_x$ 수소저장합금의 미세결정구조 및 수소화 특성평가)

  • Seok, Song;Shin, Kyung;Kweon, Soon-Yong;Ur, Soon-Chul;Lee, Young-Geun;Hong, Tae-Whan
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.3
    • /
    • pp.238-243
    • /
    • 2005
  • Mg and Mg-based alloys are most important hydrogen storage materials. It is a lightweight and low-cost materials with high hydrogen storage capacity. However, the formation of hydride at high temperature, the deterioration effect, the hydriding and dehydriding kinetics are bad factor for application. In this study, Mg and Ni have been produced by hydrogen induced mechanical alloying(HIMA) process. The raw materials, Mg(purity 99.9%) chip and Ni(purity 99.95%) chip was prepared by using a planetary ball mill apparatus(FRITSCH pulverisette 5). The balls to chips mass ratio(BCR) are 30:1. The hydrogen pressure induced 2.0MPa and milling times were 12, 24, 48, 72, 96 hours with a rotating speed of 200rpm. X-ray diffraction(XRD) analysis was made to characterize the crystallite size and misfit strain. The crystallite size measured by laser particle size analysis(PSA). Microstructure changes were investigated by scanning electron microscopy(SEM) and the transmission electron microscopy(TEM). The hydrogen storage properties were evaluated by using an Sivert's type automatic pressure-composition-therm(PCT) apparatus.

Hydriding Kinetics on Mg2NiHx-5wt% CaO Composites (Mg2NiHx-5wt% CaO 복합재료의 수소화 속도)

  • SHIN, HYO-WON;HWANG, JUNE-HYEON;KIM, EUN-A;HONG, TAE-WHAN
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.3
    • /
    • pp.156-162
    • /
    • 2021
  • Mg hydride has a relatively high hydrogen storage amount of 7.6wt%, and inexpensive due to abundant resources, but has high reaction temperature and long reaction time because of treble oxidation reactivity and upper activation energy. Their range of applications could be further extended if their hydrogenation kinetics and degradation behavior could be improved. Therefore, the effect of CaO has improved the hydrogenation kinetics and slowed down the degradation. This study focused on investigating whether to improve the hydrogenation kinetics by synthesizing Mg2NiHx-5wt% CaO composites. The Mg2NiHx-5wt% CaO composites have been synthesized by hydrogen induced mechanical alloying. The synthesized composites were characterized by performing X-ray diffraction, Scanning Electron Microscopy, Brunauer-Emmett-Teller, Thermogravimetric, and Sivert's type automatic pressure-composition-temperature analysis. Hydriding kinetics were performed using an automatic PCT measurement system and evaluated over the temperature range of 423 K, 523 K, and 623 K. As a result of calculating the hydrogen adsorption amount through the hydrogenation kinetics curve, it was calculated as about 0.42wt%, 0.91wt%, and 1.15wt%, the highest at 623 K and the lowest at 423 K.

Evaluation of Hydrogen Properties on Mg2NiHx-Graphene Composites by Mechanical Alloying (기계적 합금화법으로 제조한 Mg2NiHx-Graphene 복합재료의 수소화 특성 평가)

  • Lee, Young-Sang;Lee, Soo-Sun;Lee, Byung-Ha;Jung, Seok;Hong, Tae-Whan
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • Mg hydride has a high hydrogen capacity (7.6%), at high temperature, and is a lightweight and low cost material, thus it a promising hydrogen storage material. However, its high operation temperature and very slow reaction kinetics are obstacles to practical application. In order to overcome these disadvantages of Mg hydride, graphene powder was added to it. The addition of graphene has been shown to reduce the operating temperature of dehydrogenation. Moreover, in this report the environmental aspects of $MgH_x$-Graphene composites are investigated by means of the environmental life cycle assessment (LCA) method. $MgH_x$-Graphene mixture was prepared by hydrogen induced mechanical alloy (HIMA). The synthesized powder was characterized by XRD(X-ray Diffraction). The hydrogenation behaviors were evaluated by using a Sievert's type automatic PCT apparatus. Such evaluation of Materials also conducted in the LCA. From the result of P-C-T(Pressure-Composition-Temperature) curves, the $MgH_x$-3wt.% graphene composite was evaluated as having a 5.86wt.% maximum hydrogen storage capacity, at 523K. From absorption kinetic testing, the $MgH_x$-7wt.% graphene composite was evaluated as having a maximum 6.94wt.%/ms hydrogen absorption rate, at 573K. Environment evaluation results for the $MgH_x$-graphene composites and other materials indicated environmental impact from the electric power used and from the materials themselves.

Evaluation of Wear Characteristics of Low-alloy Steel Brake Discs for High Energy Capacity (고에너지용 저합금강 제동디스크의 마모 특성 평가)

  • Dong-gyu Lee;Kyung-il Kim;Gue-Serb Cho;Kyung-taek Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.532-537
    • /
    • 2024
  • In this study, wear characteristics and microstructure changes due to changes in alloy composition of Ni-Cr-Mo-V and Ni-Cr-Mo low-alloy steels used in brake discs for transportation system such as aircraft and high-speed trains. As a result of the hardness test, the hardness of C-Mo-V steel was the highest at 39.4±0.9HRc, and the hardness of Ni-Cr-Mo steel was the lowest at 32.4±0.6HRc. The friction coefficient tended to decrease as the vertical load increased. At a vertical load of 1 N, the friction coefficient of Ni-Cr-Mo steel was the highest at 0.842, and at a vertical load of 5 N, Mn-Cr-V steel was the highest at 0.696. Ni-Cr-Mo showed the largest wear scar width, depth, and wear amount, with a width of 711 ㎛, a depth of 8.24 ㎛, and a wear amount of 11 mg under a vertical load of 1 N, and a width of 1,017 ㎛, a depth of 19.17 ㎛, and a wear amount of 17 mg under a vertical load of 5 N. As a result of wear mechanism analysis, ploughing, delamination, and adhesion in all specimens, with plastic deformation being more prominently observed in Ni-Cr-Mo.

Studies on Corrosion inhibition of 90Cu10NiFe Alloy by Eco-Friendly Organic Compound ; Sodium Diethyl Dithio Carbamate(NaDDC) (친환경 유기화합물(NaDDC)에 의한 90Cu10NiFe합금의 부식억제 연구)

  • Jung, Gil-Bong;Kim, Doo-Han;Lee, Sung-Do
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1018-1025
    • /
    • 2011
  • The improved properties of corrosion for 90Cu10NiFe alloy in natural seawater were explained by sodium diethyl dithio carbamate(NaDDC), namely organic compound, which is reagent for heavy metal extractions of waste water. The efficiency of NaDDC as corrosion inhibitor for 90Cu10NiFe alloy has been investigated in seawater after immersion in various concentrations of NaDDC solutions for 12~36hrs at pH 8.2 by weight loss test and electrochemical techniques including potentiodynamic polarization and SEM-EDS measurements. The results showed that the corrosion resistance of 90Cu10NiFe alloy improves with the increasing concentration of NaDDC but it did not improves with increasing time any more, so the highest inhibition efficiency was 93% at 100mg/L, 36hrs. The results obtained from weight losses and corrosion rates in polarization curve measurements were in good agreement. Therefore, it showed that NaDDC is a good inhibitor for copper corrosion of 90Cu10NiFe alloy.

Effects of the Types of Coating on the Laser Brazing Characteristics of Dissimilar Joints between Mg Alloy and Steel Sheet (마그네슘합금과 철강 이종소재의 레이저 브레이징 특성에 미치는 도금층의 영향)

  • Lee, Mok-Young;Kim, Sook-Whan;Nasiri, Ali M.;Zhou, Norman Y.
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.7-12
    • /
    • 2013
  • The dissimilar welding between magnesium alloy and steel sheet was required in automobile industry to increase the strength of the dissimilar joints. Laser brazing is one of the good joining processes for Mgsteel dissimilar joint. In this study, the effect of coating materials was evaluated on the laser brazing for the dissimilar joint between AZ31 and coated steels such as Zn, Sn and Ni. Diode direct laser was used to braze the lap-edge joint with Mg600 filler wire and Superior #21 flux. The wettability was best on Zn coated steel. The interlayer was formed at the interface between brazement and steel for all coating materials. The strengths of brazed specimen were 146.5N/mm, 204.6N/mm and 101.6N/mm for Zn, Sn and Ni coated steel respectively.

Reel-to-reel electropolishing of Ni alloy tapes for IBAD template (IBAD template용 니켈 합금의 연속 전해연마)

  • Ha H. S;Kim H. K;Ko R. K;Kim H. S;Song K. J;Park C;Yoo S. I;Joo J. H;Moon S. H
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.69-73
    • /
    • 2004
  • Ni alloy tape is electropolished to be used as a metal substrate for fabrication of IBAD (ion-Beam Assisted Deposition)-MgO texture template fur HTS coated conductor. Electropolishing is needed to obtain a very smooth surface of Ni alloy tape because the in-plane texture of templates is sensitive to the roughness of metal substrate. The critical current of YBCO coated conductor depends on the texture of YBCO that depends on the texture of the IBAD MgO layer. And so the smoothness of the metal substrate is directly related to the superconducting properties of the coated conductor. In this study, we have prepared a reel-to-reel electropolishing apparatus to polish the Ni alloy tapes for IBAD. Various electropolishing conditions were investigated to improve the surface roughness. Hastelloy tape is continuously electropolished with high polishing current density (0.5 ∼ 2 A/$\textrm{cm}^2$) and fast processing time (1 ∼ 3 min). Polished hastelloy tapes have surface roughness(RMS) of below 1 nm on a 5 ${\times}$ 5 $\mu\m^2$ from AFM and SEM.

  • PDF

A1 합금의 미세 절삭가공 및 경면생성에 관한 연구

  • 제태진;김원일;이재경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.103-110
    • /
    • 1991
  • 본 연구에서는 최근들어 첨단 가공기술로서 중요시되고있는 초정밀 경면가공기술의 기본원리를 이해하고 관련지식을 습득하여 향후 보다 나은 상태의 경면가공을 위한 기초를 확립하는데에그 목적을 두었다. 실험을 위한 공작기계는 초정밀 만능 연삭반( high precision universal grinder)에 플라이컷(fly-cut)방식에 의한 절삭가공이 가능 하도록 여러가지장치들을 부착하였으며, 절삭공구는 천연 다이아몬드를 사용하고, 피삭재는 A1-Cu-Ni-Mg 합금을 사용하였다. 본 실험에서는 주어진 조건내에서 어느정도의 표면 조도를 달성할수 있는지를 알아보고 그 과정을 통하여 공작기계, 공구, 피삭재등의 영향과 절삭력, 칩, 표면상태등을 고찰하여 여러가지 현상을 규명하여 향후의 발전을 위한 대책에 활용하고자 한다.

Fabrication and Characterization of CNFs/Magnesium Composites Prepared by Liquid Pressing Process (액상가압공정을 이용한 CNF/Mg 복합재료의 제조 및 특성평가)

  • Kim, Hee-Bong;Lee, Sang-Bok;Yi, Jin-Woo;Lee, Sang-Kwan;Kim, Yang-Do
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.93-97
    • /
    • 2012
  • Carbon nano fibers (CNFs) reinforced magnesium alloy (AZ91) matrix composites have been fabricated by liquid pressing process. In order to improve the dispersibility of CNFs and the wettability with magnesium alloy melt, CNFs were mixed with submicron sized SiC particles ($SiC_p$). Also, the mixture of CNFs and $SiC_p$ were coated with Ni by electroless plating. In liquid pressing process, AZ91 melts have been pressed hydrostatically and infiltrated into three reinforcement preforms of only CNFs, the mixture of CNFs and $SiC_p$ (CNF+$SiC_p$), and Ni coated CNFs and $SiC_p$ ((CNF+$SiC_p$)/Ni). Some CNFs agglomerates were observed in only CNFs reinforced composite. In cases of the composites reinforce with CNF+$SiC_p$ and (CNF+$SiC_p$)/Ni, CNFs were dispersed homogeneously in the matrix, which resulted in the improvement of mechanical properties. The compressive strengths of CNF+$SiC_p$ and (CNF+$SiC_p$)/Ni reinforced composites were 38% and 28% higher than that of only CNFs composite.